

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 671564.

D5.3 Report on integration of ComPat services

with multiscale coupling libraries and patterns

Due Date 36

Delivery 36

Lead Partner PSNC

Dissemination Level Public

Status Final

Approved Internal review

Version 1.0

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 2 of 38

DOCUMENT INFO

Date and version number Author Comments

28.08.2018 v0.1 Bartosz Bosak Table of contents

29.08.2018 v0.2 Bartosz Bosak Executive Summary

29.08.2018 v0.3 Piotr Kopta Pilot jobs description

31.08.2018 v0.4 Tomasz Piontek Multi-Criteria brokering

01.09.2018 v0.5 Vytautas Jancauskas Queue Time Prediction Service

03.09.2018 v0.6 Bartosz Bosak Merge all parts

20.09.2018 v1.0 Tomasz Piontek Final version after the internal

review

CONTRIBUTORS

Contributor Role

Tomasz Piontek Technical Leader, WP5 Leader and author of this deliverable

Bartosz Bosak WP5 contributor

Piotr Kopta WP5 contributor

Vytautas Jancauskas WP5 contributor

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 3 of 38

TABLE OF CONTENTS

1	
 Executive summary 5	

2	
 Status of ComPat middleware services and their integration with other ComPat software

components. 6	

2.1	
 Extensions to the Extreme Scaling and Replica Computing patterns 6	

2.2	
 Support for the Heterogeneous Multiscale Computing pattern - Pilot-Job functionality 6	

2.3	
 Multi-criteria scheduling 7	

2.3.1	
 QCG-Broker scheduling plugin for time and energy criteria 8	

2.3.2	
 Queue Time Prediction Service 12	

3	
 Conclusions 12	

4	
 Appendixes 14	

Appendix 1 - QCG PilotJobs 14	

1	
 The QCG Pilot Manager v 0.3 14	

1.1	
 Overview 14	

1.2	
 Modules 14	

1.3	
 Queue & Scheduler 15	

1.4	
 Executor 15	

1.4.1	
 SLURM Execution Environment 16	

1.4.2	
 QCG Execution Environment 16	

1.5	
 File Based Interface 16	

1.5.1	
 Request File 17	

1.5.2	
 Requests (Commands) 17	

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 4 of 38

LIST OF ABREVIATIONS

EEE Experimental Execution Environment [Project Testbed]

ES Extreme Scaling [Pattern]

HMC Heterogeneous Multiscale Computing [Pattern]

HPMC High Performance Multiscale Computing

HPMCP High Performance Multiscale Computing Patterns

RC Replica Computing [Pattern]

QCG Quality in Cloud and Grid [middleware]

QTPS Queue Time Prediction Service

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 5 of 38

1 Executive summary
This deliverable provides information about the development status of the ComPat middleware services

and the progress made to integrate them with the rest of the ComPat software stack (especially coupling

libraries and patterns’ related components). It concentrates on the new capabilities that were developed

in WP5 to improve the trilateral cooperation between the ComPat resource (WP6), middleware (WP5)

and pattern layers (WP2) in order to support applications (WP3). Since the document outlines the

progress achieved in the Work Package 5 in the last 18 months of the project (M18-M36), it can be seen

as a natural extension of the deliverable D5.2 published on M18 [1] and the further implementation of

the ComPat’s architecture outlined in D5.1 on M9 [2] .

The achievements presented in the document are reflected in the final software release (M36 of the

project). This software release is already deployed on the ComPat Experimental Execution Environment

and made available to the project’s application teams.

During the last 18 months the ComPat middleware layer has been adapted to the new requirements of

High Performance Multiscale Computing Patterns (HPMCP). While the support for the previously

implemented Extreme Scaling (ES) and Replica Computing (RC) patterns was only slightly adjusted, a

set of extensions to the QCG components for the execution of applications based on the concept of the

Heterogeneous Multiscale Computing (HMC) pattern is one of the crucial new functionalities

incorporated into the middleware stack. Particularly, in order to efficiently support this coupling pattern,

QCG has been extended with the brand new mechanism for pilot jobs allowing to easily execute jobs

with an unknown number of subtasks. Due to its functionality, the created PilotJob system can be treated,

alongside MUSCLE2 and AMUSE, as the other coupling tool/library tightly integrated with QCG and

the whole ComPat software stack.

Significant efforts were devoted to advance brokering capabilities of the ComPat system. The multi-

criteria brokering plugin recently implemented for QCG-Broker allows selecting resources for

applications based on multiple metrics, such as expected time to completion and expected energy usage.

Thus a user, depending on its needs, can request the faster completion of a job or the limitation of the

energy loss, which is currently innovative and essential for brokering of large computing jobs. In order

to precisely estimate the queue time for a job, in cooperation with WP6, a new Queue Time Prediction

service (QTPS) was developed and integrated with the QCG-Broker. In short, the service collects in

real-time data from local resource managing systems and, based on solid probabilistic foundations,

provides an approximation of queuing time usable for QCG-Broker.

In Section 3 the above mentioned results of the activities of WP5 will be presented in details.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 6 of 38

2 Status of ComPat middleware services and their integration

with other ComPat software components.
The significant role of the ComPat middleware layer in supporting HPMC patterns and efficient

execution of multiscale application on HPC resources required a number of extensions and slight

improvements to the existing software. However, in order to align with the project roadmap and answer

to the new requirements of multiscale applications, it was necessary to develop a few completely new

software components and modules. This section tries to describe both aspects in details.

2.1 Extensions to the Extreme Scaling and Replica Computing patterns

The main application developed in ComPat project that fits the extreme scaling computing pattern is the

plasma physics simulation created in the Max Planck Institute for Plasma Physics. This application uses

the MUSCLE2 framework [3] to couple together single-scale kernels into a multiscale application. The

MUSCLE2 framework requires a simulation description file where size of each kernel and its

relationships to other kernels are defined. To support the MUSCLE2 description file, the QCG-Broker

service has been extended to set the following environment variables, passed transparently and

automatically to the launched MUSCLE2 based application:

● QCG_PLAN_ID - the identifier of selected scheduling plan

● QCG_KERNEL_{KERNEL_NAME} - number of cores allocated for each kernel

By using these variables, a single, universal MUSCLE2 description file can be created and it will be the

same across every cluster available in ComPat Project.

2.2 Support for the Heterogeneous Multiscale Computing pattern - Pilot-

Job functionality

In order to support scenarios where the number of computing kernels or their resource requirements in

multiscale computing applications are not known a priori, a specialised software has to be employed

that extends capabilities of typical queuing systems. After the performed analysis and review of existing

available options, a decision was made to create from scratch a new module for the QCG middleware

stack, called QCG PilotJob Manager tailored to the specific needs of the project and integrated with the

rest of the ComPat software stack. This system is designed to schedule and execute many small jobs

inside one scheduling system allocation. Direct submission of a large group of jobs to a scheduling

system can result in long aggregated time to finish as each single job is scheduled independently and

has to wait in a queue for its own slot. On the other hand the submission of a group of jobs can be

restricted or even forbidden by administrative policies on the clusters. One can argue that there are job

array mechanisms already available on many systems, however, the traditional implementations of job

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 7 of 38

array mechanisms only allow running a bunch of jobs having the same resource requirements while jobs

that are parts of a multiscale simulation by nature vary in requirements, might require to be executed in

a specific order, and therefore need more flexible solutions.

From the scheduling system perspective, QCG PilotJob Manager is seen on a cluster as a single job

inside a single user allocation. In other words, the manager controls an execution of a complex

experiment consisting of many computing jobs on resources reserved for a single job allocation. The

manager listens to user's requests and executes commands like submit job, cancel job and report resource

use. In order to manage resources and jobs the system takes into account both resource availability and

mutual dependencies between jobs. Two interfaces are defined to communicate with the system: file-

based and network-based. The former one is dedicated to and more convenient for static scenarios when

a number of jobs is known in advance. The network interface is more general and flexible as it allows

to dynamically send new requests and track execution of previously submitted jobs during the run-time.

Noticeably, the QCG PilotJob Manager’s interfaces are independent from the underlying resource

management systems and provide an abstraction layer over them, in turn, providing the users with a

single, unified interface to resources.

Due to its functionality and place in the ComPat architecture, the PilotJob, in spite of its generality,

belongs to the specific ComPat Pattern Services and Tools supporting the concept of the High

Performance Multiscale Patterns. The PilotJob was designed and implemented to support specific

requirements of the Heterogeneous Multiscale Computing Pattern, but can be also used for Replica

Pattern. The PilotJob Manager allows one in an efficient and easy way to build a single multiscale

application from many potentially dynamic tasks, which number can be unknown in advance. All the

functional and technical details concerning the QCG PilotJob system can be found in the technical

documentation of the system provided to the end-users and attached to this deliverable as Appendix 1 -

QCG PilotJobs.

2.3 Multi-criteria scheduling

Modern computational problems, including multiscale applications, belonging to the class of grand

challenge applications, require significant computational power to achieve accurate results in acceptable

time. With increasing demands for computing power from users, the operational costs of infrastructure

maintenance grows on the side of resource providers. In recent years, the cost of electricity, needed to

both power the computers and to cool them, in order to provide optimal operating conditions for the

hardware, has become an important factor. In many cases, this cost determines the possibility for further

development of the infrastructure or may even lead to a reduction in its use. Therefore, many HPC

resource providers consider a departure from the typical user billing model for the core-hours used and

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 8 of 38

the transition to a new model in which a user is assigned an energy budget. Such energy-oriented

approach makes the user more interested in optimal utilisation of the infrastructure. For these reasons,

it is necessary to provide novel software solutions in order to reconcile the conflicting requirements of

users expecting their tasks to be completed as soon as possible with those of Computation Centres trying

to minimise their expenses. The optimization of energy consumption can be achieved in many ways and

on different levels of the software and hardware layers.

2.3.1 QCG-Broker scheduling plugin for time and energy criteria

As part of the ComPat project, a multi-criteria approach for assigning in an optimal way of an entire

multiscale application or its components to the heterogeneous resources offered by the project's test and

production infrastructure, has been designed and developed as a new module to the QCG-Broker service.

Different performance and energy consumption characteristics collected from resources allow savings

to be made while maintaining the quality of the service required by the user. The proposed approach has

evolved over the course of the project. In the first prototype, only a single criterion on the time to

completion of calculations was taken into account with a user-defined limit for the use of electricity. In

the next step, the implementation of a complementary scenario was planned where energy would be

optimized while maintaining the requirements for timely delivery of results. Ultimately, the decision

was made to implement the most general solution. Instead of taking individual criteria into

consideration, the system performs multi-criteria optimization with regard to limits on given criteria.

This approach guarantees full flexibility in the definition of criteria and limits by the user when

submitting tasks. The user can choose any single criterion or a group of many criteria. The same applies

to limits giving full control on the quality of the service from the user’s point of view.

Through the arrangements with users, it was decided to include in the ComPat system the three criteria,

covering to the best of our knowledge the majority of real and potential scenarios:

● electricity needed to carry out calculations. (This criterion currently does not take into account

other infrastructure-related costs such as cooling, for example)

● time to completion - defined as the sum of the time of waiting for the resources and the time of

calculation,

● use of infrastructure in time - defined as the product of the number of cores and the hours of

their use. This criterion has been added to support the most popular method of accounting for

used core-hours.

The proposed approach is easily expandable with further criteria. Each of the criteria is optional and can

be defined with an optional limitation. Solutions that violate even one constraint (limit) are rejected.

Since the simultaneous optimization of many objectives for non-trivial cases is usually impossible, it

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 9 of 38

was decided to aggregate them through a single objective function, which is minimized. This function

is determined as a weighted sum of many objective functions related to individual criteria, where the

weights of individual criteria can be understood as a conversion of a given criterion into a common unit,

e.g. monetary.

The system allows for an optimal selection of resources in a scenario in which the total cost of

commercial or scientific calculations depends on both the energy consumed and the use of resources,

and at the same time penalty fees are charged for delays in exceeding the set date for the delivery of

results. In addition, hard limits, which cannot be exceeded, can be set on all three criteria. The approach

described above has been implemented as a new QCG-Broker resource allocation module and made

available to the users as part of the project.

The rest of this section is devoted to the implementation details of the solution.

Along with the implementation of the above multi-criteria approach in the QCG-Broker service, it was

necessary to modify the QCG-Computing services providing information about the current state of

infrastructure, including the availability of nodes of particular types. It was also needed to design and

implement a service the role of which is to gather performance and energy-consumption results to

determine the performance and energy profiles of the applications. The service is described in details in

the deliverables D4.3 [4] and D6.3[5]. Additionally, it was necessary to modify the task description used

by QCG-Broker and adapt it to the specific requirements of the project.

Thus, in a typical scenario addressed in the project, the QCG-Broker service receives, as an element of

the task description, a list of resource allocation plans with static cost values on defined criteria. These

costs are determined for each application module on the basis of the aforementioned benchmarks. The

final selection of the plan to be executed is based on full set of criteria and on the basis of dynamic

knowledge about the current state of infrastructure unknown a priori for the Pattern Optimization Service

generating the plans.

Figure 1 shows the final structure of the task description element developed to satisfy the needs of the

ComPat project (multiCriteriaPatternTopology type), taking into account the plans and their costs as

well as defining the criteria and limits taken into account in the optimization of resource allocation.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 10 of 38

Figure 1 The new QCG task description scheme for multi-criteria brokering

The meaning of individual elements is as follows:

● <kernels> - a list of appropriate computational kernels (single scale models) along with auxiliary

modules that make up a multiscale application,

● <plans> - a list of alternative execution plans generated by Pattern Optimization Service. The

QCG-Broker service selects the best plan according to the definition of optimization parameters.

Each plan has its own unique identifier and the <costs> element defining the known from

benchmarks costs of executing a given plan on the resources assigned to it. The <group> element

logically groups kernels, which for some reason (most often resulting from communication

topology) must be performed on one machine. For each kernel, resource requirements defining

the type of resource (host and node type) and the number of resources required in cores or nodes

are defined.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 11 of 38

● <decision> - the control element of the optimization parameters. It allows the user to either

select a specific plan (useful for testing purposes) or define criteria and limits for the process of

automatic selection of hardware configuration performed by the system (primary scenario). The

individual criteria and their limits are optional. With each criterion, the weight of this criterion

in the global objective function is provided.

● <hosts> - this element allows to pass to the QCG-Broker service additional execution

parameters specific for a given host, such as reservation ID, grant or queue/partition of the

queueing system.

An example of a task description for the Fusion application is presented at the end of the document in

Appendix 2 - Fusion QCG Job Description.

Based on the description of the task and the current state of the infrastructure, the QCG-Broker service

selects the optimal assignment of tasks to the resources taking into account the given criteria.

The process of selecting the optimal plan consists of the following steps:

1. Elimination of resources - at this stage the resources that will not be able to be used in the task

handling are rejected (removed from the list of potential resources). For example, they may be

resources that are unavailable to the given user, do not offer the required application or are

deliberately rejected by the user. The list of conditions taken into account in the resource

selection process is configurable and easily expandable via a system of plug-ins with a defined

interface.

2. Elimination of plans - at this stage, plans that are not possible to be implemented are eliminated

from the list of potential plans. The reason for the rejection of the plan may be, among others:

● Undefined or unavailable host or node type,

● Insufficient amount of resources of a specific type,

● Violation of one of the optimization limits,

● Missing costs in the plan for any criterion or limitation,

● Manual selection of another plan by the user,

● Violation of the requirements for the execution of a group of kernels on a single host.

The list of conditions taken into account in the plan selection process is configurable and easily

expandable through a plug-in system with a defined interface.

3. Evaluation of plans - determination of the global value of the objective function for the

remaining plans. This stage may require referring to external services such as Queue Time

Prediction Service (QTPS). QTPS is a service that enables the prediction of queued waiting time

of a task with specific resource requirements based on historical data. The QTPS service is one

of the services designed, implemented and deployed as part of the ComPat project. The general

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 12 of 38

information about QTPS is provided in the chapter 2.3.2 of this deliverable, but the technical

details of the service are described in Deliverable D6.3 [5] and in the publication [6].

4. Sorting plans by the global value of the objective function.

5. Creation (in a formalized format) of an internal QCG execution assignment plan for a given

selected plan. The assignment plan contains information about the allocation of kernels to

resources and is passed to the QCG-Broker Job Launcher module.

When implementing the task allocation mechanism in the QCG-Broker service, it was assumed that the

user can manually modify the file generated by the Pattern Optimization Service. This results in the need

to validate the correctness of the generated plans not only in terms of availability and status of resources,

but also the compliance of static costs with the accepted limits.

The described mechanism of multi-criteria allocation of resources for tasks has been designed,

implemented and deployed as part of the ComPat project work as well as made available as a default in

the final distribution of the services created within the project.

2.3.2 Queue Time Prediction Service

Queue wait time (the time a job will spend in the scheduler queue) is an important consideration in the

kind of multi-criteria brokering we want to do. To this end we have worked with WP6 to develop a

queue wait time prediction service. The service, upon receiving description of required resources, will

calculate probabilities that those resources will be available within some specific time. For example, if

we request queue wait times for 8 nodes and 128 cores, the service will find all the queues that can

provide that amount of resources and, for each, will return a list of queue wait times and probabilities.

Each queue wait time has an associated probability that signifies the chances that the job will be started

before that time. This is achieved on the queue wait time prediction service’s end by maintaining a

database of all jobs submitted to each of the systems. Around 40 attributes describing each job are stored.

From these, statistical techniques are used to determine the probabilities. This information can then be

used in the decision making process. In particular it is used in the multi-criteria optimization process

when deciding where to submit a particular part of the simulation. Full description of the queue wait

time prediction service, including the API, can be found in deliverable D6.3 [5].

3 Conclusions
The main goal of WP5 in ComPat was to provide an efficient and easy to use environment for

development, testing and execution of pattern-based multiscale applications on existing and future HPC

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 13 of 38

resources. By creating a number of novel tools and services, as well as the work spent on the integration

of middleware layer with other ComPat components, the WP5 has made a significant advancements in

all those areas. This document concentrates on a progress made in WP5 over the last 18 months of the

project. The major outcomes from this period include development of pilot job mechanism for QCG

middleware, implementation of the pattern-aware multi-criteria brokering plugin for QCG-Broker as

well as joint with WP6 development of Queue Time Prediction service and its integration with QCG-

Broker.

The confirmation of the joint achievements of work packages WP2, WP4, WP5 and WP6 at the end of

the project is the successful, common final-release of all key tools and services on month 36 (milestone

M20). The released packages are available from the project’s GitHub repository:

https://github.com/compat-project. They were also deployed on EEE and effectively used by a set of

HPMC applications developed by ComPat. See the Deliverable D3.3 document [8] for more information

on the status reached by each of the ComPat applications.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 14 of 38

4 Appendixes

Appendix 1 - QCG PilotJobs

1 The QCG Pilot Manager v 0.3

Author: Piotr Kopta pkopta@man.poznan.pl, Tomasz Piontek piontek@man.poznan.pl, Bartosz

Bosak bbosak@man.poznan.pl

Copyright (C) 2017-2018 Poznan Supercomputing and Networking Center

1.1 Overview

The QCG PilotJob Manager system is designed to schedule and execute many small jobs inside one

scheduling system allocation. Direct submission of a large group of jobs to a scheduling system can

result in long aggregated time to finish as each single job is scheduled independently and waits in a

queue. On the other hand the submission of a group of jobs can be restricted or even forbidden by

administrative policies defined on clusters. One can argue that job array mechanisms are available in

many systems, however the traditional job array mechanism only allows to run a bunch of jobs that have

the same resource requirements while jobs being parts of a multiscale simulation by nature vary in

requirements and therefore need more flexible solutions.

From the scheduling system perspective, the QCG PilotJob Manager is seen as a single job inside a

single user allocation. In other words, the manager controls the execution of a complex experiment

consisting of many jobs on resources reserved for one single job allocation. The manager reads user's

requests and executes commands like submit job, cancel job and report resource use. In order to manage

the resources and jobs the system takes into account both resource availability and mutual dependencies

between jobs. Two interfaces are defined to communicate with the system: file-based and network-

based. The former is dedicated and more convenient for a static scenarios when a number of jobs is

known in advance to the QCG PilotJob Manager start. The network interface is more general and flexible

as it allows to dynamically send new requests and track execution of previously submitted jobs during

the run-time.

1.2 Modules

The QCG Pilot Job Manager consists of the following internal functional modules:

- Queue - the queue containing jobs waiting for resources,

- Scheduler algorithm - the algorithm selecting jobs and assigning resources to them.

- Registry - the permanent registry containing information about all (current and historical) jobs

in the system,

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 15 of 38

- Executor - a module responsible for execution of jobs for which resources were assigned.

1.3 Queue & Scheduler

All the jobs submitted to the QCG PilotJob Manger system are placed in the queue in the order of they

arrival. The scheduling algorithm of QCG PilotJob Manager works on that queue. The goal of the

Scheduler is to determine the order of execution and amount of resources assigned to individual jobs to

maximise the throughput of the system. The algorithm is based on the following set of rules:

- Jobs being in the queue are processed in the FIFO manner,

- For every feasible (ready for execution) job the maximum (possible) amount of requested

resources is determined. If the amount of allocated resources is greater than the minimal

requirements requested by the user, the resources are exclusively assigned to the job and the job

is removed from the queue to be executed.

- If the minimal resource requirements are greater than total available resources the job is

removed from the queue with the FAILED status.

- If the amount of resources doesn't allow to start the job, it stays in the queue with the QUEUED

status to be taken into consideration again in the next scheduling iteration,

- Jobs waiting for successful finish of any other job, are not taken into consideration and stay in

the queue with the QUEUED state,

- Jobs for which dependency constraints can not be met, due to failure or cancellation of at least

one job which they depend on, are marked as OMITTED and removed from the queue,

- If the algorithm finishes processing the given job and some resources still remain unassigned

the whole procedure is repeated for the next job.

1.4 Executor

The QCG PilotJob Manager module named Executor is responsible for execution and control of jobs by

interacting with the cluster resource management system. The current implementation is integrated with

the SLURM system, but the modular approach allows for relatively easy integration also with other

queuing systems. The PilotJob Manager and all the jobs controlled by it are executed in a single

allocation. To hide this fact from the individual job and to give it an impression that it is executed

directly by the queuing system a set of environment variables, typically set by the queuing system, is

overwritten and passed to the job. These variables give the application all typical information about a

job it can be interested in, e.g. the amount of assigned resources. In case of parallel application an

appropriate machine file is created with a list of resources for each job.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 16 of 38

1.4.1 SLURM Execution Environment

For the SLURM scheduling system, an execution environment for a single job contains the following

set of variables:

- SLURM_NNODES - a number of nodes

- SLURM_NODELIST - a list of nodes separated by a comma

- SLURM_NPROCS - a number of cores

- SLURM_NTASKS - see SLURM_NPROCS

- SLURM_JOB_NODELIST - see SLURM_NODELIST

- SLURM_JOB_NUM_NODES - see SLURM_NNODES

- SLURM_STEP_NODELIST - see SLURM_NODELIST

- SLURM_STEP_NUM_NODES - see SLURM_NNODES

- SLURM_STEP_NUM_TASKS - see SLURM_NPROCS

- SLURM_NTASKS_PER_NODE - a number of cores on every node listed in SLURM_NODELIST

separated by a comma,

- SLURM_STEP_TASKS_PER_NODE - see SLURM_NTASKS_PER_NODE

- SLURM_TASKS_PER_NODE - see SLURM_NTASKS_PER_NODE

1.4.2 QCG Execution Environment

To unify the execution environment regardless of the queuing system a set of variables independent

from a queuing system is passed to the individual job:

- QCG_PM_NNODES - a number of nodes

- QCG_PM_NODELIST- a list of nodes separated by a comma

- QCG_PM_NPROCS - a number of cores

- QCG_PM_NTASKS - see QCG_PM_NPROCS

- QCG_PM_STEP_ID - a unique identifier of a job (generated by QCG PilotJob Manager)

- QCG_PM_TASKS_PER_NODE - a number of cores on every node listed in

QCG_PM_NODELIST separated by a comma

- QCG_PM_ZMQ_ADDRESS - an address of the network interface of QCG PilotJob Manager (if

enabled)

1.5 File Based Interface

The "File" interface allows a static sequence of commands (called requests) to be read from a file and

performed by the system.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 17 of 38

1.5.1 Request File

The request file is a JSON format file containing a sequence of commands (requests). The file must be

staged into the working directory of the QCG PilotJob Manager job and passed as an argument of this

job invocation. The requests are read in an order they are placed in the file. In the file mode, QCG

PilotJob Manager outputs all responses to the log file.

1.5.2 Requests (Commands)

The request is a JSON dictionary with the request key containing a request command. The additional

data format depends on a specific request command. The following commands are currently supported:

1.5.2.1 Submit Command

Submit a list of jobs to be processed by the system. The jobs key must contain a list of formalised

descriptions of jobs.

Job description format

The Job description is a dictionary with the following keys:

- name (required) String - job name, must be unique

- iterate (optional) Array of Number - defines a loop for iterative jobs, the two element

array with the start and stop index; the total number of iterations will be stop_index - start_index

(the last index of the sub-job will be stop_index - 1)

- execution (required) Dict - execution description with the following keys:

- exec (required) String - executable name (if available in $PATH) or absolute path to the

executable, - args (optional) Array of String - list of arguments that will be passed to

the executable,

- env (optional) Dict (String: String) - environment variables that will be appended

to the execution environment,

- wd (optional) String - a working directory, if not defined the working directory (current

directory) of QCG PilotJob Manager will be used. If the path is not absolute it is relative to the

QCG PilotJob Manager working directory. If the directory pointed by the path does not exist, it

is created before the job starts.

- stdin, stdout, stderr (optional) String - path to the standard input , standard output

and standard error files respectively.

- resources (optional) Dict - resource requirements, a dictionary with the following keys:

- numCores (optional) Dict - number of cores,

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 18 of 38

- numNodes (optional) Dict - number of nodes, The specification of numCores/numNodes

elements may contain the following keys:

o exact (optional) Number - the exact number of cores,

o min (optional) Number - minimal number of cores,

o max (optional) Number - maximal number of cores,

(the exact and min / max are mutually exclusive). If `resources` is not defined, the

`numCores` with `exact` set to 1 is taken as the default value. The `numCores` element

without `numNodes` specifies requested number of cores on any number of nodes. The

same element used along with the `numNodes` determines the number of cores on each

requested node. Both elements, `numCores` and `numNodes`, may contain special,

optional key `split-­‐into` `Number` along with `min` key. The purpose of this element

is to split total number of nodes/cores into smaller chunks for a single job. The quotient of

a total number of available cores/nodes by the `split-­‐into` value means number of

requested cores/nodes per single chunk. The `min` keyword restricts number of requested

resources to the range: <min, Total_Num / split-­‐into\>

- Dependencies (optional) Dict -­‐ a dictionary with the following items:

o after (required) Array of String - list of names of jobs that must finish before

the job can be executed. Only when all listed jobs finish (with SUCCESS) the current

job is taken into consideration by the scheduler and can be executed.

Job description variables

The job description may contain variables in the format:

${ variable-­‐name }

which are replaced with appropriate values by QCG PilotJob Manager.

The following set of variables is supported during a request validation:

- rcnt - a request counter that is incremented with every request (for iterative sub-jobs the value

of this variable is the same)

- uniq - a unique identifier of each request (each iterative sub-job has its own unique identifier)

- sname - a local cluster name

- date - a date when the request was received

- time - a time when the request was received

- dateTime - date and time when the request was received

- it - an index of a current sub-job (only for iterative jobs)

- its - a number of iterations (only for iterative jobs)

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 19 of 38

- it_start - a start index of iterations (only for iterative jobs)

- it_stop - a stop index of iterations (only for iterative jobs)

- jname - a final job name after substitution of all other used variables to their values

- The following variables are handled when resources has been already allocated and before the

start of job execution:

- root_wd - a working directory of QCG PilotJob Manager, the parent directory for all relative

job's working directories

- ncores - a number of allocated cores for the job

- nnodes - a number of allocated nodes for the job

- nlist - a list of nodes allocated for the job separated by the comma

The sample submit job request is presented below:

{
 "request": "submit",
 "jobs": [
 {
 "name": "msleep2",
 "execution": {
 "exec": "/bin/sleep",
 "args": [
 "5s"
],
 "env": {},
 "wd": "sleep.sandbox",
 "stdout": "sleep2.${ncores}.${nnodes}.stdout",
 "stderr": "sleep2.${ncores}.${nnodes}.stderr"
 },
 "resources": {
 "numCores": {
 "exact": 2
 }
 }
 }
 }
]
}

The example response is presented below:

 "code": 0,
 "message": "2 jobs submitted",
 "data": {
 "jobs": [
 "echo",
 "msleep2"
],

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 20 of 38

 "submitted": 2
 }
}

1.5.2.2 listJobs Command

Return a list of registered jobs. No additional arguments are needed. The example list jobs request is

presented below:

{
 "request": "listJobs"
}

The example response is presented below:

{
 "data": {
 "jobs": {
 "msleep2": {
 "status": "EXECUTING"
 },
 "echo": {
 "status": "EXECUTING"
 },
 "env_1": {
 "status": "EXECUTING"
 }
 },
 "length": 3
 },
 "code": 0
}

1.5.2.3 jobStatus Command

Report current status of a given jobs. The jobNames key must contain a list of job names for which

status should be reported. A single job may be in one of the following states:

- QUEUED - a job was submitted but there are no enough available resources

- EXECUTING - a job is currently executed

- SUCCEED - a finished with 0 exit code

- FAILED - a job could not be started (for example there is no executable) or a job finished with

non-zero exit code or a requested amount of resources exceeds a total amount of resources,

- CANCELED - a job has been cancelled either by a user or by a system

- OMITTED - a job will never be executed due to the dependencies (a job which this job depends

on failed or was cancelled).

The example job status request is presented below:

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 21 of 38

 {
 "request": "jobStatus",
 "jobNames": ["msleep2", "echo"]
 }

The example response is presented below:

{
 "data": {
 "jobs": {
 "msleep2": {
 "status": 0,
 "data": {
 "jobName": "msleep2",
 "status": "EXECUTING"
 }
 },
 "echo": {
 "status": 0,
 "data": {
 "jobName": "echo",
 "status": "EXECUTING"
 }
 }
 }
 },
 "code": 0
}

The status key at the top, job's level contains numeric code that represents the operation return code

- 0 means success, where other values means problem with obtaining job's status (e.g. due to the missing

job name).

1.5.2.4 jobInfo Command

Report detailed information about jobs. The jobNames key must contain a list of job names for which

information should be reported. The example job status request is presented below:

 {
 "request": "jobInfo",
 "jobNames": ["msleep2", "echo"]
 }

The example response is presented below:

{
 "data": {
 "jobs": {
 "msleep2": {
 "status": 0,
 "data": {

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 22 of 38

 "history": "\n2018-­‐03-­‐14 14:51:05.115960: QUEUED\n2018-­‐03-­‐14 14:5
1:05.116719: EXECUTING",
 "jobName": "msleep2",
 "runtime": {
 "allocation": "e0128:1",
 "wd": "/home/plgrid/plgkopta/qcg-­‐pilotmanager/qcg-­‐pilotmanager"
 },
 "status": "EXECUTING"
 }
 },
 "echo": {
 "status": 0,
 "data": {
 "history": "\n2018-­‐03-­‐14 14:51:05.116166: QUEUED\n2018-­‐03-­‐14 14:5
1:05.117643: EXECUTING",
 "jobName": "echo",
 "runtime": {
 "allocation": "e0128:1",
 "wd": "/home/plgrid/plgkopta/qcg-­‐pilotmanager/qcg-­‐pilotmanager"
 },
 "status": "EXECUTING"
 }
 }
 }
 },
 "code": 0
}

1.5.2.5 control Command

Controls behaviour of QCG PilotJob Manager. The specific command must be placed in the command

key. Currently the following commands are supported:

- finishAfterAllTasksDone - this command tells QCG PilotJob Manager to wait until all

submitted jobs finish. By default, in the file mode, the QCG PilotJob Manager application

finishes as soon as all requests are read from the request file.

The sample control command request is presented below:

 {
 "request": "control",
 "command": "finishAfterAllTasksDone"
 }

1.5.2.6 cancelJob Command

Cancel a job with a name specified in the jobName key. Currently not supported. The example cancel

job request is presented below:

{
 "request": "cancelJob",

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 23 of 38

 "jobName": "msleep2"
}

1.5.2.7 removeJob Command

Remove a job from the registry. The name of a job to be removed must be placed in the jobName key.

This request can be used in case when there is a need to submit another job with the same name - because

all the job names must be unique a new job cannot be submitted with the same name unless the previous

one is removed from the registry. The example remove job request is presented below:

{
 "request": "removeJob",
 "jobNames": ["msleep2", "echo"]
}

The example response is presented below:

{
 "data": {
 "removed": 2
 },
 "code": 0
}

1.5.2.8 resourcesInfo Command

Return current usage of resources. The information about a number of available and used nodes/cores is

reported. No additional arguments are needed. The example resources info request is presented below:

{
 "request": "resourcesInfo"
}

The example response is presented below:

{
 "data": {
 "totalCores": 8,
 "totalNodes": 1,
 "usedCores": 2,
 "freeCores": 6
 },
 "code": 0
}

1.5.2.9 finish Command

Finish the QCG PilotJob Manager application immediately. The jobs being currently executed are killed.

No additional arguments are needed. The example finish command request is presented below:

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 24 of 38

{
 "request": "finish"
}

1.6 Additional Output Files

QCG PilotJob Manager creates the following files in a working directory:

- service.log - containing service logs, very useful to debug service and jobs execution

- jobs.report - holding information about all finished (with success or failure) jobs along

with the details on status, scheduled nodes/cores, working directory and wall time; the sample

content is presented below:

msleep2 (SUCCEED)
 2018-­‐01-­‐11 16:02:27.740711: QUEUED
 2018-­‐01-­‐11 16:02:27.741276: EXECUTING
 2018-­‐01-­‐11 16:02:33.832568: SUCCEED
 allocation: e0003:2
 wd: /home/plgrid/plgkopta/qcg-­‐pilotmanager-­‐tests/sandbox/sleep2.s
andbox
 rtime: 0:00:06.082136

1.7 Python Version Issues

The current implementation of the QCG PilotJob Manager service is based on Python 3. Due to the fact

that all jobs controlled by the Manger inherit an environment, the default version of Python for all jobs

is also v3. In situation where different version of Python is required by a job, the Python module should

be changed in a job's script.

1.8 Usage

The QCG PilotJob Manager service is executed as a regular job in a queuing system. It exploits a single

system allocation for itself and all jobs it controls. For the user convenience, the service has been

registered as QCG application (currently only on cluster Eagle @ PSNC) under the name qcg-­‐pm. The

only and required argument for this application is the name (path) of the requests file. The example

script (in QCG Simple description format) is presented below:

 #QCG host=eagle
 #QCG note=QCG PM bac16

 #QCG output=${JOB_ID}.output
 #QCG error=${JOB_ID}.error

 #QCG stage-­‐in-­‐file=bac16.json
 #QCG stage-­‐in-­‐file=bac-­‐namd.sh
 #QCG stage-­‐in-­‐file=bac-­‐amber.sh
 #QCG stage-­‐in-­‐file=bac-­‐16-­‐input.tgz

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 25 of 38

 #QCG stage-­‐out-­‐dir=.-­‐>out/eagle-­‐pm-­‐bac16-­‐${JOB_ID}

 #QCG preprocess=tar -­‐-­‐strip-­‐components=1 -­‐x -­‐z -­‐f bac-­‐16-­‐input.tgz

 #QCG nodes=4:28
 #QCG queue=fast
 #QCG walltime=PT60M
 #QCG grant=compatpsnc2

 #QCG application=qcg-­‐pm
 #QCG argument=bac16.json

In the presented example the job requires 4 nodes (28 cores each), a set of input files is staged into the

working directory (the bac16.json file is the request file containing jobs descriptions). The name of

this file is the only argument for the QCG PilotJob Manager application.

In the bac16.json we define the following requests (commands):

[
{
 "request": "submit",
 "jobs": [
 {
 "name": "namd_bac16_${it}",
 "iterate": [1, 17],
 "execution": {
 "exec": "bash",
 "args": ["${root_wd}/bac-­‐namd.sh", "${it}"],
 "stdout": "logs/${jname}.stdout",
 "stderr": "logs/${jname}.stderr"
 },
 "resources": {
 "numNodes": {
 "min": 1,
 "max": 2
 }
 }
 },
 {
 "name": "amber_bac16_${it}",
 "iterate": [1, 17],
 "execution": {
 "exec": "bash",
 "args": ["${root_wd}/bac-­‐amber.sh", "${it}"],
 "stdout": "logs/${jname}.stdout",
 "stderr": "logs/${jname}.stderr"
 },
 "resources": {
 "numCores": {
 "exact": 4
 }

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 26 of 38

 },
 "dependencies": {
 "after": ["namd_bac16_${it}"]
 }
 }
]
},
{
 "request": "control",
 "command": "finishAfterAllTasksDone"
}
]

The file contains two request: submit jobs and control ones. The submit request defines two iterative

jobs. Each iteration of the second job (amber) depends on the corresponding iteration of the first sub-

job (namd). The control request is used to tell the Manager to finish after all jobs will be handled and

finished (with any result).

1.9 API

QCG PilotJob Manager provides a client side Python API which allows users to dynamically control the

instance of the Pilot Job and all its jobs. To avoid communication issues, we assume that the user's

program (Application Controller), that refers via API to the QCG PilotJob Manager, is run inside an

allocation as one of the jobs. The communication is done through the network interface provided by

QCG PilotJob Manager. The Python API is provided in the qcg.appscheduler.api package.

1.9.1 Manager

The qcg.appscheduler.api.Manager class is the main actor of the API. This class is

responsible for the initialisation of the client and handles communication with a single instance of QCG

PilotJob Manager. The class provides interface for:

- determining the resources status (the resources method)

- job submission (the submit method),

- listing all jobs (the list method),

- obtaining the current status of jobs (the status method),

- obtaining the detailed information about jobs (the info method),

- removing jobs (the remove method),

- synchronisation of the job execution (the wait4 method).

1.9.1.1 Initialization

def __init__(address = None, cfg = { })

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 27 of 38

To properly work, the Manager class needs to know the address of the QCG PilotJob Manager instance.

In case where the client application is run as one of jobs in QCG PilotJob Manager this address is stored

in the QCG_PM_ZMQ_ADDRESS environment variable, and is automatically used by the API when it

was not provided explicitly.

During the initialisation of the Manager class the user can specify some variables that configure

behaviour of the class. Currently the following configuration keys are supported:

- poll_delay - a delay in seconds between successive updates of the job status in the wait

method,

- log_file - a location of the log file

- log_level - a logging level (e.g. DEBUG); by default the logging level is set to INFO. Levels

allowed and supported so far are: DEBUG and INFO.

1.9.1.2 resources

"""
Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
"""
def resources()

This method returns information about the current status of resources available (allocated) in QCG

PilotJob Manager. The output format is described in this	
 section

1.9.1.3 submit

 """
 Submit jobs.

 Args:
 jobs (qcg.appscheduler.api.Jobs) -­‐ a list of job descriptions

 Returns:
 list -­‐ a list of names (identifiers) of submitted jobs

 Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
 """

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 28 of 38

 def submit(jobs)

Submit a list of jobs. The jobs to be submitted are stored in a Jobs object. In case of success the list of

names (identifiers) of submitted jobs is returned. The returned list can be used in other methods for

example to get actual statuses of jobs or to synchronise their execution.

1.9.1.4 qcg.appscheduler.api.Jobs

 """
 Validates and adds a new job description in a simple format to the grou
p of jobs.
 If both arguments are present, they are merged and processed as a singl
e dictionary.

 Args:
 dAttrs (dict) -­‐ simple format attributes as a dictionary
 attrs (dict) -­‐ simple format attributes as a named arguments

 Raises:
 InvalidJobDescriptionError -­‐ in case of non-­‐unique job name or inva
lid job description
 """
 def add(self, dAttrs = None, **attrs)

 """
 Validates and adds a new job description in a standard format (acceptab
le to the QCG PJM) to the group.
 If both arguments are present, they are merged and processed as a singl
e dictionary.

 Args:
 dAttrs (dict) -­‐ standard format attributes as a dictionary
 stdAttrs (dict) -­‐ standard format attributes as a named arguments

 Raises:
 InvalidJobDescriptionError -­‐ in case of non-­‐unique job name or inva
lid job description

 """
 def addStd(self, dAttrs = None, **stdAttrs)

 """

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 29 of 38

 Remove a job from the group.

 Args:
 name (str) -­‐ name of the job to be removed

 Raises:
 JobNotDefinedError -­‐ in case of lack in a group of a job with the g
iven name
 """
 def remove(self, name)

 """
 Read job descriptions (in a standard format acceptable to the QCG-­‐PJM)
from a JSON file

 Args:
 filePath (str) -­‐ path to the file containing job descriptions in a
standard format

 Raises:
 InvalidJobDescriptionError -­‐ in case of invalid job description
 """
 def loadFromFile(self, filePath)

 """
 Save job list to a file in a JSON format.

 Args:
 filePath (str) -­‐ path to the destination file

 Raises:
 FileError -­‐ in case of problems with opening / writing output file.
 """
 def saveToFile(self, filePath)

The Jobs object holds a list of job descriptions. The names of jobs must be unique. The jobs can be

described in a format presented in this	
 section, as well as in a simplified one. The main difference

between formats is that the simplified one has a more flat structure, where execution and

resources elements have been moved to the top level. The next difference is that the

dependencies section, has been simplified and replaced with the after element, that contains a

list of ancestor jobs.

The simplified job description format contains the following keys:

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 30 of 38

- name (required - True, allowed types - str) - a job's name,

- exec (required - True, allowed types - str) - a path to the executable,

- args (required - False, allowed types - list, str) - an argument or a list of arguments,

- stdin (required - False, allowed types - str) - a path to the standard input file,

- stdout (required - False, allowed types - str) - a path to the standard output file,

- stderr (required - False, allowed types - str) - a path to the standard error file,

- wd (required - False, allowed types - str) - a path to the working directory,

- numNodes (required - False, allowed types - dict) - number of nodes requirements

(described in section),

- numCores (required - False, allowed types - dict) - number of cores requirements

(described in section),

- wt (required - False, allowed types - str) - a wall-time specification,

- iterate (required - False, allowed types - list) - a list describing iterations, it should

contain two or three elements: start iteration, end iteration and optionally, the

step iteration,

- after (required - False, allowed types - list, str) - a list of (or single entry) of tasks that

should finish before current one starts.

1.9.1.5 list

 """
 List all the jobs.
 Return a list of all job names along with their statuses.

 Returns:
 list -­‐ list of jobs with additional data in format described in 'li
stJobs' method in QCG PJM.

 Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
 """
 def list(self)

This method returns a list of all submitted and registered (not yet removed) jobs from the QCG PilotJob

Manager instance along with their statuses. The output format is described in.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 31 of 38

1.9.1.6 status

 """
 Return current statuses of the given jobs.

 Args:
 names (list, str) -­‐ list of job names

 Returns:
 list -­‐ a list of job statuses in the format described in 'jobStatus
' method of QCG PJM.

 Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
 """
 def status(self, names)

This method returns a statuses of the given jobs. The output format is described in.

1.9.1.7 info

 """
 Return detailed information about the given jobs.

 Args:
 names (list, str) -­‐ a list of job names

 Returns:
 list -­‐ a list of job's detailed information in the format described
in 'jobStatus' method of
 QCG PJM.

 Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
 """
 def info(self, names)

The info method returns detailed information about specified jobs. The output format is described in.

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 32 of 38

1.9.1.8 remove

 """
 Remove jobs from registry.

 Args:
 names (list, str) -­‐ a list of job names

 Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
 """
 def remove(self, names)

The remove method removes specified jobs from the registry of QCG PilotJob Manager. The output

format is described [in][#removejob-command).

1.9.1.9 wait4

 """
 Wait until the given jobs finish.
 This method waits until all specified jobs finish its execution (succes
sfully or not).
 The QCG PJM is periodically polled about statuses of not finished jobs.
The poll interval (2 sec by
 default) can be changed by defining a 'poll_delay' key with appropriate
value (in seconds) in
 configuration of constructor.

 Args:
 names (list, str) -­‐ a list of job names

 Returns:
 dict -­‐ a map with job names and their terminal statuses

 Raises:
 InternalError -­‐ in case of request processing internal error
 ConnectionError -­‐ in case of lack of connection to the service or n
onzero response code.
 """
 def wait4(self, names)

The wait4 method synchronises the execution of jobs - it waits (blocks) until all specified jobs are

completed. The example output returned by the method is presented below:

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 33 of 38

{

 "msleep2": "SUCCEED",
 "echo": "SUCCEED",
}

1.9.2 Examples

An example user program utilising the QCG PilotJob Manager API is presented below:

import zmq

from qcg.appscheduler.api.manager import Manager
from qcg.appscheduler.api.job import Jobs

switch on debugging (by default in api.log file)
m = Manager(cfg = { 'log_level': 'DEBUG' })

get available resources
print("available resources:\n%s\n" % str(m.resources()))

submit jobs and save their names in 'ids' list
ids = m.submit(Jobs().
 add(name= 'host', exec = '/bin/hostname', args = ['-­‐-­‐fqdn'], std
out = 'host.stdout').
 add(name = 'env', exec = '/bin/env', stdout = 'env.stdout', numCor
es = { 'exact': 2 })
)

list submited jobs
print("submited jobs:\n%s\n" % str(m.list()))

wait until submited jobs finish
m.wait4(ids)

get detailed information about submited and finished jobs
print("jobs details:\n%s\n" % str(m.info(ids)))

1.9.3 Running with QCG

The QCG instance available at the Eagle cluster contains registered application qcg-­‐pm-­‐client. As

a single argument, the application requires a user's Python application. During the execution of user's

application, the environment is setup with the required Python compiler (version 3.5) as well as all

needed modules (qcg.appscheduler.api). An example QCG job description is presented below:

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 34 of 38

#QCG note=pjm-­‐client

#QCG host=eagle
#QCG walltime=PT1H
#QCG nodes=1:28

#QCG stage-­‐in-­‐file=api_ex.py
#QCG stage-­‐out-­‐dir=.-­‐>eagle.wd.${JOB_ID}

#QCG application=qcg-­‐pm-­‐client
#QCG argument=api_ex.py

In this case, the program from the file api_ex.py will be executed in a QCG PilotJob Manager

environment.

1.9.4 Glossary

Scheduling system - a service that controls and schedules access to the fixed set of computational

resources (aka. queuing system, workload manager, resource management system). The current

implementation of QCG Pilot Job supports SLURM cluster management and job scheduling system.

Job - a sequential or parallel program with defined resource requirements

Job array - a mechanism that allows to submit a set of jobs with the same resource requirements to the

scheduling system at once; commonly used in parameter sweep scenarios

Allocation - a set of resources allocated by the scheduling system for a specific time period; resources

assigned to an allocation are static and do not change in time

QCG PilotJob Manager - a service started inside a scheduling system allocation that schedules and

controls execution of jobs on the same allocation

QCG PilotJob Manager API - an interface in the form of Python module that provides communication

with the QCG PilotJob Manager

Application Controller - a user's program run as one of jobs inside QCG PilotJob Manager that, using

the QCG PilotJob Manager API, dynamically submits and synchronizes new jobs

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 35 of 38

Appendix 2 - Fusion QCG Job Description

<qcgJob appId="compat-FUSION-test" project="compat"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <task persistent="true" taskId="ES-task-2">
 <requirements>
 <multiCriteriaPatternTopology>
 <kernels>
 <kernel id="turb">
 <helper id="init"/>
 <helper id="transp"/>
 <helper id="equil"/>
 <helper id="f2dv"/>
 <helper id="dupEquil"/>
 <helper id="dupCorep"/>
 </kernel>
 </kernels>
 <plans>
 <plan id="plan1">
 <costs>
 <time>PT14H00M</time>
 <energy>100</energy>
 </costs>
 <group>
 <kernel refid="turb">
 <node host="supermuc"> thin </node>
 <resources>
 <cores>1024</cores>
 </resources>
 </kernel>
 </group>
 </plan>
 <plan id="plan2">
 <costs>
 <time>PT28H00M</time>
 <energy>200</energy>
 </costs>
 <group>
 <kernel refid="turb">
 <node host="eagle"> haswell_128 </node>
 <resources>
 <cores>512</cores>
 </resources>
 </kernel>
 </group>
 </plan>
 </plans>
 <decision>
 <optimize>
 <time limit="PT100H">1</time>
 <energy limit="10000">2</energy>
 <resources limit="200">2</resources>
 </optimize>

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 36 of 38

 </decision>
 <hosts>
 <host name="eagle">
 <reservation>eagle-res-1</reservation>
 </host>
 <host name="supermuc">
 <reservation>sm-res-1</reservation>
 </host>
 </hosts>
 </multiCriteriaPatternTopology>
 </requirements>
 <execution type="compat">
 <executable>
 <application name="muscle2" version="compat-1.2"/>
 </executable>
 <arguments>
 <value>test.cxa.rb</value>
 </arguments>
 <stdout>
 <directory>
 <location
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-
groups/plggcompat/Fusion/FastTrack/qcg-test/results</location>
 </directory>
 </stdout>
 <stderr>
 <directory>
 <location
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-
groups/plggcompat/Fusion/FastTrack/qcg-test/results</location>
 </directory>
 </stderr>
 <stageInOut>
 <file name="test.cxa.rb" type="in">
 <location
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-
groups/plggcompat/Fusion/FastTrack/qcg-test/test.cxa.rb</location>
 </file>
 <file name="inputs.tgz" type="in">
 <location
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-
groups/plggcompat/Fusion/FastTrack/qcg-test/inputs.tgz</location>
 </file>
 <file name="extract_inputs.sh" type="in">
 <location
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-
groups/plggcompat/Fusion/FastTrack/qcg-
test/extract_inputs.sh</location>
 </file>
 <directory name="outputs" type="out">
 <location
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-
groups/plggcompat/Fusion/FastTrack/qcg-test/results</location>
 </directory>

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 37 of 38

 </stageInOut>
 <environment>
 <variable
name="QCG_MODULES_LIST">compat/apps/fusion</variable>
 <variable name="QCG_PREPROCESS">extract_inputs.sh</variable>
 </environment>
 </execution>
 </task>
</qcgJob>
	

ComPat - 671564

[D5.3 Integration of ComPat services with coupling libraries and patterns] Page 38 of 38

5 References
[1] Deliverable D5.2 – ComPat middleware services:

http://www.compat-project.eu/wp-content/uploads/2018/01/d5.2-

firstreportoncompatmiddlewareservices.pdf

[2] Deliverable D5.1 – Architecture of the ComPat system:

http://www.compat-project.eu/wp-content/uploads/2016/07/ComPat_D5.1.pdf

[3] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, D. Groen, P.

V. Coveney, and A. G. Hoekstra, “Distributed Multiscale Computing with MUSCLE 2, the

Multiscale Coupling Library and Environment,” Journal of Computational Science. 5 (2014) 719–

731. doi:10.1016/j.jocs.2014.04.004

[4] Deliverable D4.3 – Final report on high level tools, including performance profiling and modelling

[5] Deliverable D6.3 – Final report on the Experimental Execution Environment

[6] Vytautas Jancauskas, Tomasz Piontek, Piotr Kopta, Bartosz Bosak, “Predicting Queue Wait Time

Probabilities for Multi-Scale Computing”, submitted to Philosophical Transactions journal.

[7] Alowayyed, Saad, et al. "Multiscale Computing in the Exascale Era." arXiv preprint

arXiv:1612.02467, 2016.

[8] Deliverable D3.3 – Report on instantiating computing patterns and performance measurements

and prediction of HPMC application

