

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 671564.

D4.3 Final report on high level tools,

including performance profiling and

modelling

Due Date Month 36

Delivery Month 36

Lead Partner ARM

Dissemination Level Public

Status Final

Approved Internal review

Version 1.1

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 2 of 23

DOCUMENT INFO

Date and version number Author Comments

13.08.18 v0.1 Oliver Perks Outline of the report with

headings of main sections

V0.2 Keeran Brabazon Arm internal review

V1.1 Oliver Perks Internal ComPat review

CONTRIBUTORS

Contributor Role

Oliver Perks Editor, WP4 Leader

Keeran Brabazon WP4 Contributor

Alfons Hoekstra WP4 Contributor

Tomasz Piontek WP4 Contributor

Tom Kirkham WP4 Contributor

Olivier Hoenen WP2 Contributor

Saad Alowayyed WP2 Contributor

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 3 of 23

TABLE OF CONTENTS

	

1. Executive summary ... 4
2. Summary of Contributions ... 4
3. Tools Update for Multiscale Profiling .. 4

3.1. SuperMUC Energy Metric ... 4
3.2. Context - QCG Integration .. 5
3.3. Context – Application Specific .. 6
3.4. Arm Performance Reports and Expert Advice .. 6

4. Performance Database ... 7
4.1. Postprocessing and Database Upload ... 8
5. Performance Prediction and Integration with Pattern Service.. 8
5.1. Single Scale Performance Prediction .. 9

5.1.1. Linear Scaling Factor .. 9
5.1.2. Curve Fitting ... 11
5.1.3. Single Scale Validation ... 13

5.2. Integration ... 14
5.3. Benchmarking ... 14
5.4. Performance Models .. 15
6. Support for ComPat Applications ... 15

6.1. HMC Pattern - Materials ... 16
7. Adding External Applications .. 16
8. Conclusion .. 16
Annexes ... 18

1. Allinea Commands .. 18
2. Performance Scaling for Fusion application ... 18
3. Estimation and Queue Time Prediction .. 20
4. Application Specific Configurations .. 21

References ... 23

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 4 of 23

1. Executive summary
This document summarises the work done in the design and deployment of the parallel debugging and

performance analysis tools to be used in ComPat. In previous deliverables we have discussed the

modification to the tools to support the ComPat software and hardware ecosystem. This deliverable

focuses on the integration of the tools into the ComPat automated workflow and their exploitation within

the project.

The document is structured as follows Section 2 details the contributions made within this document;

Section 3 covers the specifics of the new features developed within the tools; Section 4 introduces the

performance database where the results are stored; Section 5 documents how this historical information

can be used; Section 6 introduces support for a new multiscale pattern and finally in Section 8 we

conclude this report.

2. Summary of Contributions
This document provides a continuation for D4.2 [1], outlining the final state of the tools used in the

ComPat project. In D4.2 we presented on the tools being used, and how they had been modified to better

report on the ComPat environment.

This document will focus more on the integration of these tools into the ComPat workflow and the

required modifications to support this.

The work documented in previous deliverables, specifically around the development of the MUSCLE2

integration and associated custom metric, is still of key importance to the tool use within the project. A

metric refers to a user specified measurement that can be utilised by Arm MAP (performance analysis

tool) to collect and present performance data requested by the user. A custom metric is one developed

outside of the core metric pack within the Arm tools, for specialisation, such as the custom metric for

MUSCLE2 support. The work in this deliverable builds on this existing foundation of support.

3. Tools Update for Multiscale Profiling
Since the last deliverable we have added some additional support in the tools for supporting the ComPat

stack. In this section we document this effort.

3.1. SuperMUC Energy Metric

A key component for the ComPat workflow is the use of energy consumption as a factor for smart

scheduling. For this we need to collect comparable energy consumption figures for jobs in MAP.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 5 of 23

MAP has two existing energy collection methods – Intel RAPL and IPMI. Both systems have their

associated merits and demerits [2], however to ensure coverage of all on-node components we decided

to make use of IPMI.

Internally MAP uses its own IPMI Energy Agent [3] based upon libIPMItool [4] to query through IPMI

for energy and power usage. This methodology works well for the Eagle supercomputer, however

SuperMUC does not provide a suitable IPMI interface. This means we had to develop another custom

metric to collect the correct energy information.

SuperMUC is an IBM system, and whilst it supports IPMI the access method used for MAP is not

enabled. However, specifically for energy reporting there is another, easier, option – through the IBM

Active Energy Manager [5]. We developed a custom metric to read from this file and present energy

data back to the user with no additional steps. This metric is installed by default on SuperMUC.

The data collected in this custom metric is directly comparable with that collected on Eagle through the

IPMI Energy Agent, and so we can use these numbers for energy to solution comparisons within the

ComPat stack.

3.2. Context - QCG Integration

When performing a profiling analysis on a system some knowledge about the system is assumed.

However, within the ComPat distributed Experimental Execution Environment (EEE) there are multiple

machines, each with multiple partitions. Thus, when we generate a performance profile of an execution

on the EEE we must maintain some form of provenance of the data collected, as we aim to re-use

performance data collected in order to inform future scheduling choices.

Specifically, the information we want to preserve is the logical application name, machine name, the

queue partition (which defines the node type) and selected other machine specific attributes. An example

is shown in Listing 1. To enable this, Arm modified the MAP tool to enable a free form ‘Notes’ field,

collected by the environment variable “ALLINEA_NOTES”.

To collect this information, we build this environment variable as a set of key value pairs, which are

extensible. For example, the logical application name (what we call the multiscale application not the

specific binary name) is set when the application module is set, an example is shown for the Fusion

application.

plgoperks@client:~$ module load compat/apps/fusion

plgoperks@client:~$ echo $ALLINEA_NOTES

COMPAT_NTASKS=1:COMPAT_HPC_SYSTEM=EAGLE:COMPAT_APP=FUSION

Listing 1: Allinea notes environment variables

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 6 of 23

On a machine by machine level we could code to query some of the more system specific information,

but this would be a replication of effort. For simplicity we query the QCG environment variables –

shown in Table 1. These pass information about the job from the QCG level – which is often how the

application user perceives their job.

Table 1: QCG environment variables used for MAP Notes field

Environment Variable Usage

QCG_HOST Name of the system e.g. Eagle

QCG_PROCESSES Number of processes assigned by QCG

QCG_JOBID QCG job ID

QCG_NODE_TYPES Node type list e.g. eagle_haswell_128

3.3. Context – Application Specific

To understand and attribute performance to different applications we must first understand how to

identify the application. During the integration of the tools it was established a lot of the interpretation

stages are application specific, thus all the scripts must be engineered to identify the different

applications – and interpret the data differently based on this.

As discussed in the previous subsection, we have implemented the logical application name as an

environment variable in the application’s module file. This makes the first step easier. However, when

running the specific kernels, we must anticipate the names of the binaries – this must be hard coded into

the scripts.

The main application specific context is provided via the generation of a problem size definition, this is

generated by parameter extraction (from input files) and a config hash generation. The config hash is a

MD5SUM hash of the input files, used to distinguish unique kernel problems.

Details of the config hash generation and parameter extraction is provided in Appendix 4.

3.4. Arm Performance Reports and Expert Advice

Tasks 4.3 and 4.4 were designed to extend the existing Arm Performance Reports tool, to focus it on

multiscale models. To this end we had intended to fully develop an internal feature called expert advice

– which advises the user on best practices based on values of key metrics. Such as advising users that

they were bound by collective MPI communication and so the application may not scale well.

However, the progression of the project has led to a more ‘automated’ approach to performance data

collection and storage. As we integrate the tools within the ComPat workflow, we focused less on the

manual performance inspection side of things. This diminished use-case, and the required significant

investment in software development means these items were de-prioritised.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 7 of 23

The use of Arm MAP within the profiling phase is complimented with the use of Performance Reports

for some of the data aggregation phase – to generate the resulting JSON stub. For this Performance

Reports was updated to support the new custom metrics developed – and the workflow used – but no

further ComPat specific developments were made.

4. Performance Database
Fundamentally the point of collecting all of the performance information is to allow the ComPat stack

to make better decisions with regards to optimising resource usage.

As such we need to establish a tight workflow of data – and crucially this involves integration with the

existing services. In Section 4.1 we detail the integration with the Pattern Service, but to enable the

integration we must first store all the data in a single accessible location.

For the performance data collected from MAP it was decided that a dedicated performance database

would be the best option. This database has been installed on LRZ resources and is accessible from

within the PSNC QCG head-node used within ComPat. The workflow for this profiling is shown in

Figure 1.

Whilst MAP can collect vast quantities of performance data we only want to store a limited set of this

data, which will allow us to perform performance comparisons and estimations later.

During the postprocess phase we filter out the relevant information from the performance profile, and

augment it with the QCG contextual information discussed in Section 3.2. This data is then stored in a

json snippet which can then be uploaded to the database.

An example of the scaling data which can be extracted from the performance database is shown in

Appendix 2 for running the Fusion application across the EEE resources. For technical details about the

performance database please refer to deliverable D6.3 [6].

Figure 1: ComPat Performance Analysis Workflow

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 8 of 23

4.1. Postprocessing and Database Upload
The location and action of each of the post processing phases is critical. QCG jobs are staged onto

remote systems and executed. The job’s XML definition will outline which files need to be returned to

the QCG head-node. Thus, we have a choice of locations for each stage in the workflow, either on the

compute node as part of the job, or on the QCG head-node after the job finishes.

As the postprocessing script analyses the input files to each kernel, it makes sense that this information

is captured as part of the execution of the kernel. To do this we use a wrapper script around the binary

which: launches Arm MAP, runs the postprocessor and moves the resulting JSON file to a predefined

location.

At the end of the run all of the generated JSON files (one per kernel) can then be staged back to the

QCG head-node. From here they are copied into a shared directory (shared across the ComPat project).

A Linux cron-job then monitors this shared folder for new files. These are processed and uploaded to

the performance database – and the original JSON file is removed.

This whole process, whilst complex, allows the different tools in the ComPat stack access to the right

data at the right time.

5. Performance Prediction and Integration with Pattern Service
The collection and storage of the performance data, discussed in Section 4, has been implemented for

one single purpose – to help predict application resource usage in the future.

To this end we perform a historical analysis on the data stored in the database, for a given application

kernel, and predict metrics such as runtime and energy consumption.

Accurate estimate for runtime and energy consumption can then be used by QCG for resource brokering

– as discussed in [7]. The runtime estimates will also be used by the QTPS (queue time prediction

service) for estimating queue time, as discussed in [6]. To this end we developed two components.

Firstly, a performance predictor, based on historical information, and then an integration component

with the existing pattern service.

It should be noted that the performance prediction phase is only interested in ‘strong scaling’ – that is

scaling the number of cores assigned to a fixed problem size – with the goal of solving the problem

faster. This is because at this point in the ComPat stack the user has provided the problem they wish to

compute – and the service is only there to optimise the associated execution. We discuss the process of

integration, with the pattern service in Section 5.2 and Section 5.3.

Further descript of the integration, from a pattern service perspective, is provided in [8].

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 9 of 23

5.1. Single Scale Performance Prediction
The database analysis is enabled for the prediction of single scale performance, based on the historical

data. From this we can derive the expected execution time for a kernel, we do not compose this into a

multiscale performance prediction.

The parameter space performance prediction is done over consists of: Node type, core count and problem

size. That is for a given problem size, on a known node type we estimate performance for different core

counts.

The concept of node type and core counts are well defined. However, that of problem size is less well

defined. As this framework must support multiple applications we have implemented a generic concept

which can simply be extended to new applications.

5.1.1. Linear Scaling Factor

For the definition of a generic problem size metric we have defined a linear scaling metric. This is an

application specific value representing a single unit of computing, based on the parameters extracted

from the problem set. It allows us to normalise the performance data to a time to solve a unit of

computation.

In Figure 2 we show the database entries for the ‘gem’ kernel of Fusion. We can see that there are three

entries, each representing the kernel under different ‘problem sizes’. All three have the same spatial

dimensions (‘nx00’, ‘ny00’, ‘ns00’), gem internal timesteps (‘nsteps’) and number if fluxtubes

(‘nftubes’). However, two of these runs (26 and 151) represent the benchmark run (4 outer iterations

from ‘its_start’ to ‘its_stop’ inclusive). Whereas, kernel 147 represents a larger scale production run (21

outer iterations).

Kernels 26 and 151 differ in their hash but not parameters – which means something in the cxa or xml

file has changed, but the change was not in one of the parameters identified by the application developer

as a proxy for performance.

Figure 2: Database results for Fusion’s Gem kernel

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 10 of 23

We note that the parameters must correlate to a linear relationship between value and performance, to

facilitate scaling properly. For example, if we had a cubic data set, of size 10, then we would need to

represent this as a 10*10*10 factor not a 10 factor, as the move to a size 20 data set would represent an

8x increase in problem size, not a 2x.

Thus, for each kernel problem we can define a scaling factor, shown in Table 3:

Table 2: Gem scaling parameters

Kernel ID Scaling Equation Scaling Factor

26 1/(32*128*128*8*100*(3-0+1)) 5.96046E-10

147 1/(32*128*128*8*100*(20-0+1)) 1.13533E-10

151 1/(32*128*128*8*100*(3-0+1)) 5.96046E-10

We can then apply this scaling factor to normalise the CPU time, defined by runtime – (MPI time +

MUSCLE2 time + IO time), for each run in the database. Figure 3 shows this analysis for the Gem kernel,

on approximately 100 runs, categorised by node type.

We can see here an obvious trend – representing the increased division of work by strong scaling.

Projecting the CPU time to core-hours would help account for this – but instead we choose to fit this

data with a curve fitting algorithm. This allows us to better anticipate the wider trends.

We note that to make a prediction based on this ‘scaling factor’ projection we simply need to derive a

new scaling factor for our ‘input’ problem and apply this to the fitted result.

All of the logic and curve fitting implementation is then application agnostic – and an application would

only need to provide the logic to generate a scaling factor from the input deck, and from the parameters

in the database, for each record.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 11 of 23

We note that the benefit of this scaling factor approach is that as new data is added to the database,

regardless of problem size, it can be used in new predictions. This the predictions become more accurate

the more the database is used for both benchmarking and production runs.

5.1.2. Curve Fitting

Once we have normalised the performance data is to be used in the prediction of the run time or energy

consumption, we extract the performance data – grouped by node type.

The more historical data is available, the larger this data set is likely to be, and in turn the more accurate

the prediction based upon it.

We break up the data into two fundamental components which will exhibit different scaling

characteristics: CPU time and MPI time.

We treat energy consumption at a proportional value to time – first normalising to a per-core power

consumption then extrapolating from there, based on the new estimated runtime and core count.

For each characteristic we form a table of core count and value – and pass it to the curve fitting routine

with the corresponding fitting function, for each node type in turn.

Using the Python SciPy ‘curve_fit’ [9] library we fit each characteristic to an expected scaling curve,

and use known properties of the scaling to bound the estimations. These are detailed in Table 3.

Figure 3: CPU Time Scaling Factor for Gem

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 12 of 23

Table 3: Curve Fitting Equations

Characteristic Curve Equation Bounds

CPU Time T(x) = a * (1.0 / x) + b a,b >= 0

MPI Time T(x) = a * x + b * x2 + c * log2(x) + d

The CPU time follows a strict reciprocal relationship, as parallel performance is bounded by Amdahl’s

law [10]. We note that this function is monotonically decreasing – and tends to b.

MPI time is more complicated to model – for this we use a second order polynomial with an additional

base 2 logarithmic term.

Figure 4: MPI Time Estimation

From Figure 4 we illustrate our estimation for the MPI time (for Gem on Eagle Haswell_64) – based on

our problem size normalisation, using our derived fitting function, shown in orange. We also compare

this to a standard 2nd order polynomial (blue dash) fitted to the existing database values (blue dots). We

see how whilst the polynomial is accurate within known data it trends poorly for unknown data.

 Obviously, when there is insufficient input data we run the risk of overfitting, in such a case we operate

on a simplified version of the curve equation.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 13 of 23

5.1.3. Single Scale Validation

In this section we have presented our methodology for predicting single scale application performance,

using a parameter-based normalisation. To validate this approach, we want to test the ability to predict

performance for a previously unseen configuration.

For this we will stick with the Fusion example demonstrated earlier. However, we will vary two

components – to ensure the test is unique. Firstly, we will query for a previously untested core count,

and secondly an untested problem size. We will use the Eagle Haswell_64 node type, and execute on 64

cores with 8 outer iterations.

We query the pattern driven planner, which includes the optimisation part, for a plan which matches our

requirements, and record the estimates. We then execute that plan and evaluate the resulting

performance.

Table 4: Performance Prediction Validation

 Prediction (s) Actual Recording (s) Error (%)

Gem - CPU Time 2391.12 2483 3.84

Gem - MPI Time (s) 460.72 582 26.32

Chease – CPU Time (s) 20.96 17 18.89

ETS – CPU Time (s) 8.24 8 2.91

Imp4dv – CPU Time (s) 2.48 2 19.35

Total 2883.52 3092 7.23

Table 4 presents our kernel by kernel performance prediction and validation. Here we can see a high

accuracy across the kernels – with the exception of the MPI prediction for Gem. We also note that the

runtime (s) is recorded as an integer, which can distort error margins at small values.

Whilst the 26% error seen in our validation of MPI time is inaccurate we consider this an improvement

over a standard polynomial fitting, as illustrated in Figure 4. However, it does suggest that there is scope

for improvement – from a more comprehensive application specific performance model – a topic we

touch upon in Section 5.4.

Energy consumption validation is more complicated. Our estimation generates a size-normalised power

consumption. That is how much power (energy /s) is used per-core on a specific node type. In this case

14.35 w.

This must then be multiplied by the core count for estimation, 64, and the total runtime of a kernel

(including MPI time and MUSCLE2 time). However, the MUSCLE time comes from the composition

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 14 of 23

of the multiscale model. For validation we assume a simplistic Gem runtime composition of the sum of

all kernels – which is close to accurate.

Table 5: Gem Energy Consumption Validation

 Time (s) Estimated Energy (j) Actual Energy

(j)

Error (%)

Estimated Time 2883.52 2,650,041 3,084,620 16.39

Actual Time 3092 2,841,641 3,084,620 8.55

The energy consumption prediction of Gem is also shown in Table 5. Based on our estimated Gem

runtime, and our estimated power / core metric we observe a 16.4% error on our estimation. However,

as shown in Table 4 our runtime estimation (based on Gem’s MPI time) is an underestimate, and runtime

is a key factor in energy estimation. If we use our power estimation with the real runtime (from Table 4)

we see this error drop to 8.5%. We see this as a very acceptable estimation.

5.2. Integration
The ability to predict performance based on historical information is only useful if we make use of the

resulting data. For this we need to integrate the performance prediction into the Pattern Service

workflow.

This is feasible, as all the input required by the performance prediction is the name of the application to

predict for – and a definition of the input problem.

As a result, it will generate a set of permutations of execution plans with associated runtime and energy

predictions.

Appendix 3 shows how the predicted runtimes can be augmented with data from other services – such

as the queue time prediction service.

As the database derived performance prediction is only for single scale performance we must recompose

these predictions into a multiscale simulation prediction. This work happens within the optimisation part

of the pattern service, and is documented in [8].

5.3. Benchmarking
One key addition to our historical data analysis approach is the use of benchmarking. The goal is to seed

the database with performance data for applications. However, inherent to their nature, benchmarks are

not full executions of the simulation, and we operate on reduced size representations.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 15 of 23

Therefore, the choice of application parameters is crucial, as for a benchmark we will want to reduce

the overall runtime. This is traditionally done by reducing either the size of the problem, or the duration

of the run. Thus, we must capture these parameters, and understand how to project them within the

performance estimation phase.

By running multiple benchmarks across different systems at multiple core counts we can gain an

approximation of application performance to allow the performance prediction service to function.

For the database the only difference between a benchmark and a production run is the problem ‘size’ as

expressed by the parameters within the kernel definition. Thus no extra considerations need to be made.

When run through QCG, the difference between a normal execution and a benchmark execution is that

there is a single execution plan, which is provided to QCG. This means that there are no options for

QCG to optimise between, and the simulation is run as instructed.

5.4. Performance Models
In Section 5.1.2 we demonstrate how we apply curve fitting to historical data. This procedure is based

on a generic understanding of application scaling, and the available parameters for each application.

Obviously, this is suboptimal – and where better data is available a more accurate performance

prediction can be made.

Specifically, when a performance model already exists for an application we can make use of that within

the performance prediction stage.

Research has been done to show that intricate parameterised LogGP performance models can operate

with a high degree of accuracy, such as the model generated for wave-front codes in [11]. With

appropriate data collection, and integration, such models could be exploited within the performance

prediction phase.

Currently, no such detailed parameterised models exist for the applications within ComPat, but with

further development an enhanced performance prediction scheme could be deployed.

6. Support for ComPat Applications
For much of the ComPat project, application support for distributed computing patterns has been

focussed on representatives of both the Extreme Scale (ES) and the Replica Computing (RC) pattern [1]

[12]. The Heterogenous Multiscale Computing (HMC) pattern took was phased for later in the project

delivery, and so tool support also came later, we detail this through the Materials application.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 16 of 23

Whilst most of the profiling and data storage infrastructure is generic and application agnostic, there are

a few components where application specific logic is required (specifically the hash generation, and

parameter extraction).

To date full support is provided for:

• Fusion

• ISR2D

• Materials

6.1. HMC Pattern - Materials

The representative Materials modelling HMC application makes use of a QCG pilot job – a job container

within an allocation. Within this framework the application consists of both a micro model and a macro

model. As the micro model progresses it task-farms micro model simulations within the pilot job. Both

the number of these micro-models and their size (MPI ranks) are determined dynamically at runtime.

These micro-models are LAMMPS simulations, and do not make use of any external coupling library

such as MUSCLE2. The start-up of these simulations is controlled via a JSON file of MPI execution

lines, which are then launched by the pilot job manager.

Using the profiling tools, within this setup, is very simple as the MPI run command is simply replaced

by the MAP profile framework. Each of these simulations will then generate their own profile – which

will be aggregated against the QCG job ID in the performance database.

7. Adding External Applications
Throughout this report, and those prior to it, we have focussed on the specific set of applications used

within the ComPat project. An ambition of the project has been to attract external applications to the

ComPat software stack – to demonstrate the value in improving multiscale application development and

deployment.

Whilst individually all the major components are generic (QCG, MAP, the Performance Database), and

thus application agnostic, much of the integration logic is dependent on internalised knowledge about

the application and kernel being run.

The additional steps required are documented in Appendix 4.

8. Conclusions
In this deliverable, we have discussed the contribution to the ComPat project provided through the use

of the Arm HPC tools.

Building upon deliverable D4.2 [1] we show how the tools have progressed, and the benefit they bring

to the ComPat project.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 17 of 23

A large focus of this report has been on integration – specifically, how the performance profiling tools

became an integral component of the pattern service.

The real value of the tools lays in the information they can collect, and how that information can be

used. For that reason, we detail how the Arm MAP performance profiler has been integrated into the

different components within the system, such as QCG and MUSCLE, to collect better data. The

culmination of this integration with job execution, is the performance database. This is an ever-growing

record of historical performance data from across the ComPat Experimental Execution Environment.

Whilst the performance database itself is of significant value, its true worth lays in its integration and

the automation of performance prediction. Whilst this is an incredibly complex field, which has not been

utilised in its most advanced forms in this project, we have demonstrated how the use of simple

performance models in a distributed execution environment are very valuable. Further research and

development using more sophisticated methods will be able to improve on the utility of the results

outlined here, through the use of the same framework.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 18 of 23

Annexes

1. Allinea Commands

Table 6: List of command line prefixes for launching Allinea tools, along with a brief description of files that are

generated.
Command Line Prefix Purpose Output

ddt Start an interactive debugging
session with a GUI on the local
system

No output file generated

ddt --offline Start an offline debugging
session

HTML debug report generated

ddt --connect Start a debugger which will
connect to an available parent
process. This is used in order to
connect to a GUI running on a
remote system in a ‘Reverse
Connect’ procedure. See Section
3.3 of the Allinea DDT User
Guide [13] for more details.

No output file generated

map Start a profiling session in a GUI
on the current system

.map profile generated

map --profile Start a profiling session without
the need for a GUI

.map profile generated

perf-report Start a profiling session without
the need for a GUI

HTML summary profile
generated

2. Performance Scaling for Fusion application

Interrogation of the performance database allows us to plot performance data from ComPat applications

across the EEE resources.

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 19 of 23

Figure 5: Fusion application strong scaling across the EEE machines

0

200

400

600

800

1000

1200

1400

1600

1800

128 256 512 1024 2048

Ru
nt
im

e
(s
)

Fusion -­‐ Strong Scaling

SuperMUC -­‐ Thin SuperMUC -­‐ Fat Eagle Neale

Figure 6: Fusion breakdown of scaling on SuperMUC thin nodes

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 20 of 23

Figure 8: Fusion energy to solution comparison for EEE machines

3. Estimation and Queue Time Prediction

Once we have established data, such as the benchmark data shown in Figure 6 – we can estimate for a

problem which is larger – in this case moving from 3 timesteps to 200 timesteps.

0

0.5

1

1.5

2

2.5

3

128 256 512 1024 2048

En
er
gy
 to

 S
ol
ut
io
n
(k
W
h)

Fusion Energy -­‐ Strong Scaling

SuperMUC -­‐ Thin SuperMUC -­‐ Fat Eagle Neale (RAPL)

Figure 7: Fusion breakdown of scaling on Eagle nodes

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 21 of 23

Once we have a runtime prediction from the performance prediction component we must obtain a queue

time prediction. This takes the jobs runtime, an overhead assumption (in this case 10%), the size of the

job and the desired node type. It then returns a queue time based on a probability of starting (in this case

80%).

Figure 9: Fusion runtime with associated queue time prediction

4. Application Specific Configurations
To add support for a new application – within the scope of the software tools – there are a number of

steps you need to follow.

Module File

On each system there should be a module file which sets up the correct environment for the

application. This includes setting the appropriate environment variables for identifying the name

of the application:

prepend-path ALLINEA_NOTES COMPAT_APP=<New Application>

CXA Identification

During the kernel_postprocess.py analysis we read the cxa file – for MUSCLE2 applications.

We obtain the location of this file from either an application specific default – or a system

environment variable. Each new application should add an appropriate entry.

0
20000
40000

60000
80000
100000
120000
140000
160000
180000

128 256 512 1024 2048

Ti
m
e
(s
)

Runtime Overhead Queue Time

Figure 10: Setting the CXA location

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 22 of 23

Hash Function

To establish the uniqueness of a problem we generate a hash value from the input files, or parameters,

used. This exists in the kernel_postprocess.py file

Figure 11: Hash function file setting

Parameter Extraction

The next stage of insight into the application is kernel specific – and is for extracting information on the

parameters to the kernel configuration. This is extracted from either the input files of runtime

parameters.

Database Upload

The database upload phase makes use of the application specific data extracted from the performance

data. However, it also has its own application specific behaviour. This time to manage how to aggregate

performance data. Specifically, this is with regards to the potential for shared resources on nodes, when

using MUSCLE2, as multiple kernels can run both simultaneously and on the same node. So, to calculate

the total energy used (which is reported per node) we must either sum the values – if they were executed

on distinct resources – or take a maximum if on shared resources.

Figure 12: Extracting runtime parameters

Figure 13: Data field aggregation

ComPat - 671564

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 23 of 23

References

[1] ComPat, “D4.2 - Report on status of performance profiling of multiscale simulations,” 2017.

[2] T. Ilsche, D. Hackenberg, S. Graul, G. Schöne and J. Schuchart, “Power measurements for

compute nodes: Improving sampling rates, granularity and accuracy,” Sixth International Green

and Sustainable Computing Conference (IGSC), pp. 1-8, 2015.

[3] Arm, “IPMI Energy Agent,” [Online]. Available: https://developer.arm.com/products/software-

development-tools/hpc/documentation/ipmi-energy-agent. [Accessed 2018].

[4] D. Laurie, “IPMItool,” [Online]. Available: https://github.com/ipmitool/ipmitool. [Accessed

2018].

[5] IBM, Implementing IBM Systems Director Active Energy Manager 4.1.1, 2009.

[6] ComPat, “D6.3 - Final report on the Experimental Execution Environment,” 2018.

[7] ComPat, “D5.3 - Report on integration of ComPat services with multiscale coupling libraries and

patterns,” 2018.

[8] ComPat, “D2.3 - Final Report on Multiscale Computing Patterns Including thier Performance,”

2018.

[9] SciPy, “Curve Fit,” [Online]. Available: https://docs.scipy.org/doc/scipy-

0.16.1/reference/generated/scipy.optimize.curve_fit.html.

[10] Wolfram, “Demonstrations of Amdahl's Law,” [Online]. Available:

http://demonstrations.wolfram.com/AmdahlsLaw/. [Accessed 2018].

[11] G. Mudalige, M. Vernon and S. Jarvis, “A plug-and-play model for evaluating wavefront

computations on parallel architectures,” IEEE International Symposium on Parallel and

Distributed Processing, 2008.

[12] Allinea Software Ltd., “Deliverable 4.1: Report and software on design of tools and required

actions to support performance tools for multiscale,” H2020 ComPat, 2016.

[13] Allinea Software Ltd., “Allinea DDT User Guide,” August 2016. [Online]. Available:

http://www.allinea.com/user-guide/forge/DDT.html#x8-27000II.

