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1.   Executive summary 
This document summarises the work done in the design and deployment of the parallel debugging and 

performance analysis tools to be used in ComPat. In previous deliverables we have discussed the 

modification to the tools to support the ComPat software and hardware ecosystem. This deliverable 

focuses on the integration of the tools into the ComPat automated workflow and their exploitation within 

the project. 

 

The document is structured as follows Section 2 details the contributions made within this document; 

Section 3 covers the specifics of the new features developed within the tools; Section 4 introduces the 

performance database where the results are stored; Section 5 documents how this historical information 

can be used; Section 6 introduces support for a new multiscale pattern and finally in Section 8 we 

conclude this report. 

2.  Summary of Contributions 
This document provides a continuation for D4.2 [1], outlining the final state of the tools used in the 

ComPat project. In D4.2 we presented on the tools being used, and how they had been modified to better 

report on the ComPat environment.  

This document will focus more on the integration of these tools into the ComPat workflow and the 

required modifications to support this. 

 

The work documented in previous deliverables, specifically around the development of the MUSCLE2 

integration and associated custom metric, is still of key importance to the tool use within the project. A 

metric refers to a user specified measurement that can be utilised by Arm MAP (performance analysis 

tool) to collect and present performance data requested by the user. A custom metric is one developed 

outside of the core metric pack within the Arm tools, for specialisation, such as the custom metric for 

MUSCLE2 support. The work in this deliverable builds on this existing foundation of support. 

3.  Tools Update for Multiscale Profiling 
Since the last deliverable we have added some additional support in the tools for supporting the ComPat 

stack. In this section we document this effort. 

3.1.   SuperMUC Energy Metric 

A key component for the ComPat workflow is the use of energy consumption as a factor for smart 

scheduling. For this we need to collect comparable energy consumption figures for jobs in MAP. 
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MAP has two existing energy collection methods – Intel RAPL and IPMI. Both systems have their 

associated merits and demerits [2], however to ensure coverage of all on-node components we decided 

to make use of IPMI.  

Internally MAP uses its own IPMI Energy Agent [3] based upon libIPMItool [4] to query through IPMI 

for energy and power usage. This methodology works well for the Eagle supercomputer, however 

SuperMUC does not provide a suitable IPMI interface. This means we had to develop another custom 

metric to collect the correct energy information. 

 

SuperMUC is an IBM system, and whilst it supports IPMI the access method used for MAP is not 

enabled. However, specifically for energy reporting there is another, easier, option – through the IBM 

Active Energy Manager [5]. We developed a custom metric to read from this file and present energy 

data back to the user with no additional steps. This metric is installed by default on SuperMUC.  

The data collected in this custom metric is directly comparable with that collected on Eagle through the 

IPMI Energy Agent, and so we can use these numbers for energy to solution comparisons within the 

ComPat stack. 

3.2.   Context - QCG Integration 

When performing a profiling analysis on a system some knowledge about the system is assumed. 

However, within the ComPat distributed Experimental Execution Environment (EEE) there are multiple 

machines, each with multiple partitions. Thus, when we generate a performance profile of an execution 

on the EEE we must maintain some form of provenance of the data collected, as we aim to re-use 

performance data collected in order to inform future scheduling choices. 

 

Specifically, the information we want to preserve is the logical application name, machine name, the 

queue partition (which defines the node type) and selected other machine specific attributes. An example 

is shown in Listing 1. To enable this, Arm modified the MAP tool to enable a free form ‘Notes’ field, 

collected by the environment variable “ALLINEA_NOTES”. 

To collect this information, we build this environment variable as a set of key value pairs, which are 

extensible. For example, the logical application name (what we call the multiscale application not the 

specific binary name) is set when the application module is set, an example is shown for the Fusion 

application.  

 

plgoperks@client:~$ module load compat/apps/fusion 

plgoperks@client:~$ echo $ALLINEA_NOTES 

COMPAT_NTASKS=1:COMPAT_HPC_SYSTEM=EAGLE:COMPAT_APP=FUSION 

Listing 1: Allinea notes environment variables 
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On a machine by machine level we could code to query some of the more system specific information, 

but this would be a replication of effort. For simplicity we query the QCG environment variables – 

shown in Table 1. These pass information about the job from the QCG level – which is often how the 

application user perceives their job. 

 
Table 1: QCG environment variables used for MAP Notes field 

Environment Variable Usage 

QCG_HOST Name of the system e.g. Eagle 

QCG_PROCESSES Number of processes assigned by QCG 

QCG_JOBID QCG job ID 

QCG_NODE_TYPES Node type list e.g. eagle_haswell_128 

3.3.   Context – Application Specific 

To understand and attribute performance to different applications we must first understand how to 

identify the application. During the integration of the tools it was established a lot of the interpretation 

stages are application specific, thus all the scripts must be engineered to identify the different 

applications – and interpret the data differently based on this.  

As discussed in the previous subsection, we have implemented the logical application name as an 

environment variable in the application’s module file. This makes the first step easier. However, when 

running the specific kernels, we must anticipate the names of the binaries – this must be hard coded into 

the scripts. 

The main application specific context is provided via the generation of a problem size definition, this is 

generated by parameter extraction (from input files) and a config hash generation. The config hash is a 

MD5SUM hash of the input files, used to distinguish unique kernel problems. 

Details of the config hash generation and parameter extraction is provided in Appendix 4. 

3.4.   Arm Performance Reports and Expert Advice 

Tasks 4.3 and 4.4 were designed to extend the existing Arm Performance Reports tool, to focus it on 

multiscale models. To this end we had intended to fully develop an internal feature called expert advice 

– which advises the user on best practices based on values of key metrics. Such as advising users that 

they were bound by collective MPI communication and so the application may not scale well. 

 

However, the progression of the project has led to a more ‘automated’ approach to performance data 

collection and storage. As we integrate the tools within the ComPat workflow, we focused less on the 

manual performance inspection side of things. This diminished use-case, and the required significant 

investment in software development means these items were de-prioritised.  
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The use of Arm MAP within the profiling phase is complimented with the use of Performance Reports 

for some of the data aggregation phase – to generate the resulting JSON stub. For this Performance 

Reports was updated to support the new custom metrics developed – and the workflow used – but no 

further ComPat specific developments were made. 

 

4.  Performance Database 
Fundamentally the point of collecting all of the performance information is to allow the ComPat stack 

to make better decisions with regards to optimising resource usage.  

As such we need to establish a tight workflow of data – and crucially this involves integration with the 

existing services. In Section 4.1 we detail the integration with the Pattern Service, but to enable the 

integration we must first store all the data in a single accessible location. 

 

For the performance data collected from MAP it was decided that a dedicated performance database 

would be the best option. This database has been installed on LRZ resources and is accessible from 

within the PSNC QCG head-node used within ComPat. The workflow for this profiling is shown in 

Figure 1.  

 

 

Whilst MAP can collect vast quantities of performance data we only want to store a limited set of this 

data, which will allow us to perform performance comparisons and estimations later.  

During the postprocess phase we filter out the relevant information from the performance profile, and 

augment it with the QCG contextual information discussed in Section 3.2. This data is then stored in a 

json snippet which can then be uploaded to the database. 

 

An example of the scaling data which can be extracted from the performance database is shown in 

Appendix 2 for running the Fusion application across the EEE resources. For technical details about the 

performance database please refer to deliverable D6.3 [6]. 

 

Figure 1: ComPat Performance Analysis Workflow 
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4.1.   Postprocessing and Database Upload 
The location and action of each of the post processing phases is critical. QCG jobs are staged onto 

remote systems and executed. The job’s XML definition will outline which files need to be returned to 

the QCG head-node. Thus, we have a choice of locations for each stage in the workflow, either on the 

compute node as part of the job, or on the QCG head-node after the job finishes. 

As the postprocessing script analyses the input files to each kernel, it makes sense that this information 

is captured as part of the execution of the kernel. To do this we use a wrapper script around the binary 

which: launches Arm MAP, runs the postprocessor and moves the resulting JSON file to a predefined 

location. 

At the end of the run all of the generated JSON files (one per kernel) can then be staged back to the 

QCG head-node. From here they are copied into a shared directory (shared across the ComPat project). 

A Linux cron-job then monitors this shared folder for new files. These are processed and uploaded to 

the performance database – and the original JSON file is removed.  

 

This whole process, whilst complex, allows the different tools in the ComPat stack access to the right 

data at the right time.  

5.  Performance Prediction and Integration with Pattern Service 
The collection and storage of the performance data, discussed in Section 4, has been implemented for 

one single purpose – to help predict application resource usage in the future. 

To this end we perform a historical analysis on the data stored in the database, for a given application 

kernel, and predict metrics such as runtime and energy consumption.  

 

Accurate estimate for runtime and energy consumption can then be used by QCG for resource brokering 

– as discussed in [7]. The runtime estimates will also be used by the QTPS (queue time prediction 

service) for estimating queue time, as discussed in [6]. To this end we developed two components. 

Firstly, a performance predictor, based on historical information, and then an integration component 

with the existing pattern service. 

 

It should be noted that the performance prediction phase is only interested in ‘strong scaling’ – that is 

scaling the number of cores assigned to a fixed problem size – with the goal of solving the problem 

faster. This is because at this point in the ComPat stack the user has provided the problem they wish to 

compute – and the service is only there to optimise the associated execution. We discuss the process of 

integration, with the pattern service in Section 5.2 and Section 5.3. 

Further descript of the integration, from a pattern service perspective, is provided in [8]. 
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5.1.   Single Scale Performance Prediction 
The database analysis is enabled for the prediction of single scale performance, based on the historical 

data. From this we can derive the expected execution time for a kernel, we do not compose this into a 

multiscale performance prediction. 

The parameter space performance prediction is done over consists of: Node type, core count and problem 

size. That is for a given problem size, on a known node type we estimate performance for different core 

counts. 

 

The concept of node type and core counts are well defined. However, that of problem size is less well 

defined. As this framework must support multiple applications we have implemented a generic concept 

which can simply be extended to new applications. 

5.1.1.  Linear Scaling Factor 

For the definition of a generic problem size metric we have defined a linear scaling metric. This is an 

application specific value representing a single unit of computing, based on the parameters extracted 

from the problem set. It allows us to normalise the performance data to a time to solve a unit of 

computation.  

 

 

In Figure 2 we show the database entries for the ‘gem’ kernel of Fusion. We can see that there are three 

entries, each representing the kernel under different ‘problem sizes’. All three have the same spatial 

dimensions (‘nx00’, ‘ny00’, ‘ns00’), gem internal timesteps (‘nsteps’) and number if fluxtubes 

(‘nftubes’). However, two of these runs (26 and 151) represent the benchmark run (4 outer iterations 

from ‘its_start’ to ‘its_stop’ inclusive). Whereas, kernel 147 represents a larger scale production run (21 

outer iterations). 

Kernels 26 and 151 differ in their hash but not parameters – which means something in the cxa or xml 

file has changed, but the change was not in one of the parameters identified by the application developer 

as a proxy for performance. 

 

Figure 2: Database results for Fusion’s Gem kernel 
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We note that the parameters must correlate to a linear relationship between value and performance, to 

facilitate scaling properly. For example, if we had a cubic data set, of size 10, then we would need to 

represent this as a 10*10*10 factor not a 10 factor, as the move to a size 20 data set would represent an 

8x increase in problem size, not a 2x. 

Thus, for each kernel problem we can define a scaling factor, shown in Table 3: 

 
Table 2: Gem scaling parameters 

Kernel ID Scaling Equation Scaling Factor 

26 1/(32*128*128*8*100*(3-0+1)) 5.96046E-10 

147 1/(32*128*128*8*100*(20-0+1)) 1.13533E-10 

151 1/(32*128*128*8*100*(3-0+1)) 5.96046E-10 

 

We can then apply this scaling factor to normalise the CPU time, defined by runtime – (MPI time + 

MUSCLE2 time + IO time), for each run in the database. Figure 3 shows this analysis for the Gem kernel, 

on approximately 100 runs, categorised by node type. 

We can see here an obvious trend – representing the increased division of work by strong scaling. 

Projecting the CPU time to core-hours would help account for this – but instead we choose to fit this 

data with a curve fitting algorithm. This allows us to better anticipate the wider trends. 

 

We note that to make a prediction based on this ‘scaling factor’ projection we simply need to derive a 

new scaling factor for our ‘input’ problem and apply this to the fitted result. 

All of the logic and curve fitting implementation is then application agnostic – and an application would 

only need to provide the logic to generate a scaling factor from the input deck, and from the parameters 

in the database, for each record. 
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We note that the benefit of this scaling factor approach is that as new data is added to the database, 

regardless of problem size, it can be used in new predictions. This the predictions become more accurate 

the more the database is used for both benchmarking and production runs. 

5.1.2.  Curve Fitting 

Once we have normalised the performance data is to be used in the prediction of the run time or energy 

consumption, we extract the performance data – grouped by node type. 

The more historical data is available, the larger this data set is likely to be, and in turn the more accurate 

the prediction based upon it. 

We break up the data into two fundamental components which will exhibit different scaling 

characteristics: CPU time and MPI time.  

We treat energy consumption at a proportional value to time – first normalising to a per-core power 

consumption then extrapolating from there, based on the new estimated runtime and core count. 

For each characteristic we form a table of core count and value – and pass it to the curve fitting routine 

with the corresponding fitting function, for each node type in turn. 

 

Using the Python SciPy ‘curve_fit’ [9]  library we fit each characteristic to an expected scaling curve, 

and use known properties of the scaling to bound the estimations. These are detailed in Table 3. 

  

Figure 3: CPU Time Scaling Factor for Gem 
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Table 3: Curve Fitting Equations 

Characteristic Curve Equation Bounds 

CPU Time T(x) = a * (1.0 / x) + b a,b >= 0 

MPI Time T(x) = a * x + b * x2 + c * log2(x) + d  

 

The CPU time follows a strict reciprocal relationship, as parallel performance is bounded by Amdahl’s 

law [10]. We note that this function is monotonically decreasing – and tends to b.  

MPI time is more complicated to model – for this we use a second order polynomial with an additional 

base 2 logarithmic term. 

 

 
Figure 4: MPI Time Estimation 

 

From Figure 4 we illustrate our estimation for the MPI time (for Gem on Eagle Haswell_64) – based on 

our problem size normalisation, using our derived fitting function, shown in orange. We also compare 

this to a standard 2nd order polynomial (blue dash) fitted to the existing database values (blue dots). We 

see how whilst the polynomial is accurate within known data it trends poorly for unknown data. 

 

 Obviously, when there is insufficient input data we run the risk of overfitting, in such a case we operate 

on a simplified version of the curve equation. 
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5.1.3.  Single Scale Validation  

In this section we have presented our methodology for predicting single scale application performance, 

using a parameter-based normalisation. To validate this approach, we want to test the ability to predict 

performance for a previously unseen configuration.  

For this we will stick with the Fusion example demonstrated earlier. However, we will vary two 

components – to ensure the test is unique. Firstly, we will query for a previously untested core count, 

and secondly an untested problem size. We will use the Eagle Haswell_64 node type, and execute on 64 

cores with 8 outer iterations. 

We query the pattern driven planner, which includes the optimisation part, for a plan which matches our 

requirements, and record the estimates. We then execute that plan and evaluate the resulting 

performance. 

 
Table 4: Performance Prediction Validation 

 Prediction (s) Actual Recording (s) Error (%) 

Gem - CPU Time  2391.12 2483 3.84 

Gem - MPI Time (s) 460.72 582 26.32 

Chease – CPU Time (s) 20.96   17   18.89  

ETS – CPU Time (s) 8.24   8   2.91  

Imp4dv – CPU Time (s) 2.48   2   19.35  

Total 2883.52   3092   7.23  

 

Table 4 presents our kernel by kernel performance prediction and validation. Here we can see a high 

accuracy across the kernels – with the exception of the MPI prediction for Gem. We also note that the 

runtime (s) is recorded as an integer, which can distort error margins at small values. 

 

Whilst the 26% error seen in our validation of MPI time is inaccurate we consider this an improvement 

over a standard polynomial fitting, as illustrated in Figure 4. However, it does suggest that there is scope 

for improvement – from a more comprehensive application specific performance model – a topic we 

touch upon in Section 5.4. 

 

Energy consumption validation is more complicated. Our estimation generates a size-normalised power 

consumption. That is how much power (energy /s) is used per-core on a specific node type. In this case 

14.35 w.  

This must then be multiplied by the core count for estimation, 64, and the total runtime of a kernel 

(including MPI time and MUSCLE2 time). However, the MUSCLE time comes from the composition 
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of the multiscale model. For validation we assume a simplistic Gem runtime composition of the sum of 

all kernels – which is close to accurate. 

 
Table 5: Gem Energy Consumption Validation 

 Time (s) Estimated Energy (j) Actual Energy 

(j) 

Error (%) 

Estimated Time 2883.52 2,650,041 3,084,620 16.39 

Actual Time 3092 2,841,641 3,084,620 8.55 

 

 

The energy consumption prediction of Gem is also shown in Table 5. Based on our estimated Gem 

runtime, and our estimated power / core metric we observe a 16.4% error on our estimation. However, 

as shown in Table 4 our runtime estimation (based on Gem’s MPI time) is an underestimate, and runtime 

is a key factor in energy estimation. If we use our power estimation with the real runtime (from Table 4) 

we see this error drop to 8.5%. We see this as a very acceptable estimation. 

5.2.   Integration 
The ability to predict performance based on historical information is only useful if we make use of the 

resulting data. For this we need to integrate the performance prediction into the Pattern Service 

workflow. 

This is feasible, as all the input required by the performance prediction is the name of the application to 

predict for – and a definition of the input problem. 

As a result, it will generate a set of permutations of execution plans with associated runtime and energy 

predictions.  

Appendix 3 shows how the predicted runtimes can be augmented with data from other services – such 

as the queue time prediction service. 

 

As the database derived performance prediction is only for single scale performance we must recompose 

these predictions into a multiscale simulation prediction. This work happens within the optimisation part 

of the pattern service, and is documented in [8]. 

5.3.   Benchmarking 
One key addition to our historical data analysis approach is the use of benchmarking. The goal is to seed 

the database with performance data for applications. However, inherent to their nature, benchmarks are 

not full executions of the simulation, and we operate on reduced size representations. 
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Therefore, the choice of application parameters is crucial, as for a benchmark we will want to reduce 

the overall runtime. This is traditionally done by reducing either the size of the problem, or the duration 

of the run. Thus, we must capture these parameters, and understand how to project them within the 

performance estimation phase. 

By running multiple benchmarks across different systems at multiple core counts we can gain an 

approximation of application performance to allow the performance prediction service to function. 

For the database the only difference between a benchmark and a production run is the problem ‘size’ as 

expressed by the parameters within the kernel definition. Thus no extra considerations need to be made. 

 

When run through QCG, the difference between a normal execution and a benchmark execution is that 

there is a single execution plan, which is provided to QCG. This means that there are no options for 

QCG to optimise between, and the simulation is run as instructed. 

5.4.   Performance Models 
In Section 5.1.2 we demonstrate how we apply curve fitting to historical data. This procedure is based 

on a generic understanding of application scaling, and the available parameters for each application. 

Obviously, this is suboptimal – and where better data is available a more accurate performance 

prediction can be made. 

Specifically, when a performance model already exists for an application we can make use of that within 

the performance prediction stage.  

 

Research has been done to show that intricate parameterised LogGP performance models can operate 

with a high degree of accuracy, such as the model generated for wave-front codes in [11]. With 

appropriate data collection, and integration, such models could be exploited within the performance 

prediction phase. 

 

Currently, no such detailed parameterised models exist for the applications within ComPat, but with 

further development an enhanced performance prediction scheme could be deployed. 

6.  Support for ComPat Applications 
For much of the ComPat project, application support for distributed computing patterns has been 

focussed on representatives of both the Extreme Scale (ES) and the Replica Computing (RC) pattern [1] 

[12]. The Heterogenous Multiscale Computing (HMC) pattern took was phased for later in the project 

delivery, and so tool support also came later, we detail this through the Materials application. 
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Whilst most of the profiling and data storage infrastructure is generic and application agnostic, there are 

a few components where application specific logic is required (specifically the hash generation, and 

parameter extraction). 

To date full support is provided for: 

•   Fusion 

•   ISR2D 

•   Materials  

6.1.   HMC Pattern - Materials 

The representative Materials modelling HMC application makes use of a QCG pilot job – a job container 

within an allocation. Within this framework the application consists of both a micro model and a macro 

model. As the micro model progresses it task-farms micro model simulations within the pilot job. Both 

the number of these micro-models and their size (MPI ranks) are determined dynamically at runtime. 

 

These micro-models are LAMMPS simulations, and do not make use of any external coupling library 

such as MUSCLE2. The start-up of these simulations is controlled via a JSON file of MPI execution 

lines, which are then launched by the pilot job manager. 

Using the profiling tools, within this setup, is very simple as the MPI run command is simply replaced 

by the MAP profile framework. Each of these simulations will then generate their own profile – which 

will be aggregated against the QCG job ID in the performance database. 

7.  Adding External Applications 
Throughout this report, and those prior to it, we have focussed on the specific set of applications used 

within the ComPat project. An ambition of the project has been to attract external applications to the 

ComPat software stack – to demonstrate the value in improving multiscale application development and 

deployment.  

Whilst individually all the major components are generic (QCG, MAP, the Performance Database), and 

thus application agnostic, much of the integration logic is dependent on internalised knowledge about 

the application and kernel being run. 

The additional steps required are documented in Appendix 4. 

8.  Conclusions 
In this deliverable, we have discussed the contribution to the ComPat project provided through the use 

of the Arm HPC tools.  

Building upon deliverable D4.2 [1] we show how the tools have progressed, and the benefit they bring 

to the ComPat project. 
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A large focus of this report has been on integration – specifically, how the performance profiling tools 

became an integral component of the pattern service.  

 

The real value of the tools lays in the information they can collect, and how that information can be 

used. For that reason, we detail how the Arm MAP performance profiler has been integrated into the 

different components within the system, such as QCG and MUSCLE, to collect better data. The 

culmination of this integration with job execution, is the performance database. This is an ever-growing 

record of historical performance data from across the ComPat Experimental Execution Environment.  

 

Whilst the performance database itself is of significant value, its true worth lays in its integration and 

the automation of performance prediction. Whilst this is an incredibly complex field, which has not been 

utilised in its most advanced forms in this project, we have demonstrated how the use of simple 

performance models in a distributed execution environment are very valuable. Further research and 

development using more sophisticated methods will be able to improve on the utility of the results 

outlined here, through the use of the same framework. 
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Annexes 

1.   Allinea Commands 

 
Table 6: List of command line prefixes for launching Allinea tools, along with a brief description of files that are 

generated. 
Command Line Prefix Purpose Output 

ddt Start an interactive debugging 
session with a GUI on the local 
system 

No output file generated 

ddt --offline Start an offline debugging 
session 

HTML debug report generated 

ddt --connect Start a debugger which will 
connect to an available parent 
process. This is used in order to 
connect to a GUI running on a 
remote system in a ‘Reverse 
Connect’ procedure. See Section 
3.3 of the Allinea DDT User 
Guide [13] for more details. 

No output file generated 

map Start a profiling session in a GUI 
on the current system 

.map profile generated 

map --profile Start a profiling session without 
the need for a GUI 

.map profile generated 

perf-report Start a profiling session without 
the need for a GUI 

HTML summary profile 
generated 

 

2.   Performance Scaling for Fusion application 

Interrogation of the performance database allows us to plot performance data from ComPat applications 

across the EEE resources. 
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Figure 5: Fusion application strong scaling across the EEE machines 
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Figure 6: Fusion breakdown of scaling on SuperMUC thin nodes 



ComPat - 671564 

[D4.3 Final Report on High Level Tools, Including Performance Modelling] Page 20 of 23 

 
 

 
Figure 8: Fusion energy to solution comparison for EEE machines 

 

3.   Estimation and Queue Time Prediction 

Once we have established data, such as the benchmark data shown in Figure 6 – we can estimate for a 

problem which is larger – in this case moving from 3 timesteps to 200 timesteps. 
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Figure 7: Fusion breakdown of scaling on Eagle nodes 
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Once we have a runtime prediction from the performance prediction component we must obtain a queue 

time prediction. This takes the jobs runtime, an overhead assumption (in this case 10%), the size of the 

job and the desired node type. It then returns a queue time based on a probability of starting (in this case 

80%). 

 

 
Figure 9: Fusion runtime with associated queue time prediction 

4.  Application Specific Configurations 
To add support for a new application – within the scope of the software tools – there are a number of 

steps you need to follow. 

 

Module File 

On each system there should be a module file which sets up the correct environment for the 

application. This includes setting the appropriate environment variables for identifying the name 

of the application: 

prepend-path  ALLINEA_NOTES COMPAT_APP=<New Application> 

 

CXA Identification 

During the kernel_postprocess.py analysis we read the cxa file – for MUSCLE2 applications. 

We obtain the location of this file from either an application specific default – or a system 

environment variable. Each new application should add an appropriate entry. 
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Figure 10: Setting the CXA location 
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Hash Function 

To establish the uniqueness of a problem we generate a hash value from the input files, or parameters, 

used. This exists in the kernel_postprocess.py file 

 
Figure 11: Hash function file setting 

Parameter Extraction 

 

The next stage of insight into the application is kernel specific – and is for extracting information on the 

parameters to the kernel configuration. This is extracted from either the input files of runtime 

parameters. 

 

Database Upload 

The database upload phase makes use of the application specific data extracted from the performance 

data. However, it also has its own application specific behaviour. This time to manage how to aggregate 

performance data. Specifically, this is with regards to the potential for shared resources on nodes, when 

using MUSCLE2, as multiple kernels can run both simultaneously and on the same node. So, to calculate 

the total energy used (which is reported per node) we must either sum the values – if they were executed 

on distinct resources – or take a maximum if on shared resources. 

 

Figure 12: Extracting runtime parameters 

Figure 13: Data field aggregation 
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