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1   Executive summary 
This report presents the performance studies of the exemplar COMPAT applications, as carried out on 

multiple different HPC platforms, including those forming the Experimental Execution Environment 

(EEE). We consider various performance metrics, as may be most appropriate for the given application 

e.g. wall clock time, file sizes, scalability (strong and weak), and energy consumption (where available). 

In one weak-scaling application we also consider scalability of the middleware itself. 

 

To further explore and assess the potential impact of extreme parallelism (believed to become important 

in the approaching exascale era of supercomputing), we also carried out performance studies on two 

applications beyond the EEE, using even larger supercomputers. To simplify the assessment, we note 

that the multiscale applications in COMPAT can be abstracted as sections of replica computing steps 

(either static in number or, in the case of the HMC pattern, dynamic) and large monolithic applications 

(such as, often, the most expensive model in the Extreme Scaling pattern). For this reason, our 

predictions as pertain to exascale resource usage largely come from detailed studies of application 

performance for a Replica-based exemplar (the Binding Affinity Calculator) and for an exemplar 

containing a large monolithic application (HemeLB). 

 

Furthermore, a detailed mathematical model was developed to predict the time and length scales 

attainable by a lattice-Boltzmann solver (such as Palabos or HemeLB) in a fixed time on computers with 

e.g. 1 billion cores (exascale). 

 

With respect to the exascale, a major conclusion of this work was that, even for those applications 

exhibiting excellent strong scaling characteristics, the trade-off between resolving time or physical 

length scales in the system will frequently render such simulations inefficient on enormous core counts 

when compared to the weak scaling (replica) case. We therefore expect that the actual impact of exascale 

resources on future science applications will be to encourage the use of uncertainty quantification 

(techniques that often require multiple runs) in a field where researchers too often only run large 

simulations once. 

 

With respect to the instantiation of Multiscale Computing Patterns (MCPs) [1], we see how energy 

measurements (where available) can guide as to the best choice of supercomputer to send a given job 

to. Combined with the ComPat formalisms and performance models (reported in earlier deliverables) 

we now have a concrete path to using that data. As we move towards extreme parallelism, we argue that 

such cost efficient approaches will become essential. 
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2   Report 

2.1 Largest scale performance tests 

In this section, we detail the performance studies carried out on ComPat applications on the largest 

resources. These were typically tested on resources larger than that available under the Experimental 

Execution Environment. A weak scaling and a strong scaling application are considered, and some 

exascale predictions are formulated. 

 

2.1.1 Binding Affinity Calculator (replica-based representative) 
For multiscale applications following the replica computing pattern, it makes more sense to think in 

terms not of a single simulation, but rather of simulation campaigns. It is the orchestration of these 

campaigns that is key here, and therefore the choice and performance of the middleware is highly 

important, particularly as regards the efficient use of putative exascale resources. 

 

In the first year of this project, the BAC was on the fast track and, with the giant, full-SuperMUC run, 

we demonstrated the feasibility of such enormous RC runs. In the second year, BAC was the application 

with which we developed and built the RC pattern, and we demonstrated that with RC we can aid in 

running BAC on non-trivial distributed environments. Finally, this year we want to demonstrate how 

BAC behaves on a single resource, with systematic studies of weak scaling. By adding up these three 

parts, we get the full picture whereby all ingredients are ready to go into production, using RC, the pilot 

jobs, and so on. 

 

Our selected multiscale application demonstrating replica computing is the High Throughput Binding 

Affinity Calculator (HTBAC), which builds upon the RADICAL Cybertools (a middleware component 

of the COMPAT stack), as the framework solution to support the coordination of the required scale of 

computations, allowing the exploitation of thousands of cores at a time. 

 

To determine the performance of HTBAC, particularly as regards the extension to extreme parallelism, 

a number of performance studies were carried out. The main resource used was NCSA Blue Waters, 

with additional runs on LRZ SuperMUC and ORNL Titan. 

 

2.1.1.1 Scalability and resource usage 

We explored the performance of HTBAC on NCSA Blue Waters with two different protocols: 
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1.   ESMACS (Enhanced sampling of molecular dynamics with approximation of continuum 

solvent), consisting of 25 replicas, i.e. 25 pipelines 

2.   TIES (Thermodynamic integration with enhanced sampling) consisting of 13 lambda windows 

and 5 replicas, i.e. 65 pipelines 

 

Both protocols run for a total of 6 ns simulation durations. ESMACS produces 3.5 GB/system (24 

MB/ns) while TIES produces 10 GB/system (24 MB/ns). Each simulation step in TIES and ESMACS 

requires 32 cores. Protocols run approximately 10-12 hours, depending on the physical system and the 

number of timesteps provided by the user. 

 

When considering an application following the replica computing (RC) pattern, the most pertinent 

performance property is that of weak scaling. This is also the most scientifically relevant property, as it 

demonstrates the ability of HTBAC to solve large number of drug candidates in essentially the same 

amount of time (as the resources increase). 

 

To this end, in our first study we investigated the weak scaling behaviour when screening sixteen drug 

candidates concurrently using thousands of multi-stage pipelines on more than 32,000 cores on NCSA 

Blue Waters (we observed similar scaling on other platforms such as ORNL Titan for different 

protocols). 

 

 
Figure 1: Weak scaling properties of HTBAC. We investigate the weak scaling of HTBAC as the ratio of the number of 

protocol instances to resources is kept constant. Overheads of HTBAC framework (right), and RCT overhead (left) and total 
execution time TTX (left) for experimental configurations investigating the weak scaling of TIES. We ran two trials for each 

protocol instance configuration. Error bars in TTX in 2 and 8-protocol runs are insignificant. 
 
A detailed representation of the weak scaling performance of HTBAC for the TIES protocol is presented 

in Figure 1, demonstrating almost perfect scaling to hundreds of concurrent multi-stage pipelines. 
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In our second set of studies [2] we carried out a number of experiments on Blue Waters using both the 

ESMACS and TIES protocols. We present here the results of the weak scaling experiments: 

 
 

In Figure 2 we show (a) the weak scaling of HTBAC with the TIES protocol,  (b) with the ESMACS 

protocol, and (c) with instances of both TIES and ESMACS protocols. 

 
Figure 2. Weak scaling of HTBAC. The ratio number of protocol instances to resources is constant. Task Execution Time 

with and HTBAC, EnTK+RP, aprun overheads with (a) TIES (Experiment 1), (b) ESMACS (Experiment 2), and (c) TIES and 

ESMACS (Experiment 3). 

 

For all weak scaling experiments (1–3) we used physical systems from the BRD4-GSK library (16 

ligands made available for this work by GlaxoSmithKline) with the same number of atoms and similar 

chemical properties. The uniformity of these physical systems ensures a consistent workload with 

insignificant variability when characterizing their performance under different conditions. 
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In all weak scaling experiments (Figure 1 and 2) we observed minimal variation in the task duration as 

the number of protocol instances increases. We conclude that HTBAC shows near-ideal weak scaling 

behavior under the conditions tested. The overhead for the TIES results includes the adaptive sampling 

algorithms. The HTBAC overhead depends mostly on the number of protocol instances that need to be 

generated for an application. This overhead shows a super linear increase as we grow the number of 

protocol instances, but the duration of the overhead is negligible when compared to Total Task 

Execution Time. 

 

This detailed performance data supplements and reinforces our earlier experiences of the excellent weak 

scaling of the BAC on large supercomputing platforms such as LRZ SuperMUC in 2016, in which both 

phases (a total of 250,000 cores) were used simultaneously for 37 hours, testing 50 candidate drugs and 

generating around 5 terabytes of data1. 

 

2.1.1.2 Node failure rate 

The probability of node failures is likely to increase as supercomputers are constructed with ever larger 

numbers of nodes, and might therefore become significant on some exascale platforms. However, on 

the resources used for our performance measurements, we observed typically very few node failures, 

even when under high stress. During a campaign of 64 proteins, 25 replicas each, and 2-4 nodes per 

replica (executed on Blue Waters), only 2 node failures occurred (even though this campaign was 

executed twice). It should be noted that these two campaigns were executed shortly after Blue Waters 

came back online after a shutdown period, so the system may have been in a more stable state than after 

a long period of continuous usage. Nevertheless, there is little evidence on present systems (even when 

using hundreds of thousands of cores) that node failures will significantly impact the scalability of 

HTBAC in the short to medium term, although unforeseen issues might well arise on the e.g. billions of 

cores a full exascale machine may contain. This remains an active research topic, and in principle we 

understand, in the context of RC, how to deal with potential node failure in an automatic way. However, 

given this experiment we have not yet implemented automatic detection and recovery of node failures 

into the RC pattern. We intend, as larger machines come available, to continue running such huge 

campaigns to understand the actual node failures, and when needed, to realise fault tolerance and 

recovery mechanisms into the RC pattern. 

  

                                                   
1http://www.gauss-centre.eu/SharedDocs/Pressemitteilungen/GAUSS-CENTRE/EN/2016-
03_SuperMUC_Pers_Med.html?nn=1290050 
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2.1.1.3 Conclusions and prediction for Exascale 

Extrapolating from the promising weak scaling performance analysis presented above, we might expect 

good scaling of replica based applications at even greater node counts. Our studies have not yet shown 

any limitations that might preclude efficient use of exascale services. Differences in architecture and 

hardware may, naturally, affect this, and as the COMPAT stack matures, we will obtain more 

performance data to further clarify the viability of such applications on exascale machines.  

As we demonstrated in deliverable D2.2 and D3.2, replica computing can also very well be executed in 

a distributed mode, running replicas across a range of supercomputers, with the multiscale computing 

patterns algorithms and software facilitating the detailed deployment. We continue to explore these 

capabilities, but this will require a production ready distributed supercomputing environment, such as 

the ComPat EEE. The European Supercomputing landscape would, in our opinion, very much benefit 

from such an environment, e.g. operated under the governance of PRACE. We have demonstrated that 

our middleware (QCG) is production-ready, and that our RC pattern is capable of exploiting such 

distributed HPC resources in a very efficient way. In combination with the weak scaling performance 

as reported in this deliverable, this would even allow us to reach the Exascale on a RC application by 

aggregating the power of sub-exascale machines. To conclude, ComPat has demonstrated that this is a 

viable option. 

 

2.1.2 HemeLB (monolithic representative) 
The Experimental Execution Environment did not have sufficiently large resources for determining large 

scale monolithic runs. As we have argued in Deliverables D2.1 and D3.1, and demonstrated in D2.2 and 

D3.2, the primary models in Extreme Scaling patterns are large scale monolithic codes. We have already 

demonstrated how the multiscale computing patterns algorithms and software can efficiently deploy 

Extreme Scaling applications on the EEE. The next step is to study in detail if and how the primary 

models themselves can scale to the largest HPC machines currently available to us. 

We therefore used ARCHER (up to 96k cores) and Blue Waters (up to 300k cores) for our largest runs. 

The ARCHER supercomputer in Edinburgh, UK is a Cray XC30, with dual 12-core Intel Xeon E5-

2697v2 (Ivy Bridge) 2.7 GHz processors joined by two QPI links, connected via a proprietary Cray 

Aries interconnect in a dragonfly topology. The Blue Waters supercomputer in Illinois is a Cray 

XE6/XK7 system consisting of more than 22,500 XE6 compute nodes (each containing two AMD 

Interlagos processors, with 8 floating point cores each). 

  



ComPat - 671564 

 

[D3.3 Report on Instantiating Computing Patterns and performance measurements and prediction of 

HPMC Application]         Page 10 of 21 
 

 

2.1.2.1 Scalability and resource usage 

Unlike the Replica Computing case explored earlier in this report, the most scientifically relevant scaling 

for such a monolithic application was determined to be strong scaling. While weak scaling would allow 

(physically) larger systems to be simulated in the same time (on more cores), the characteristic time 

scales of processes of interest typically scale as a power (greater than or equal to 1) of the system size, 

and thus aiming for constant wall clock time would not yield scientifically useful results. 

 

Instead, we focussed on how a system of fixed size might be simulated faster through the use of more 

cores (on the same supercomputer). Our test system was the circle of Willis, an important vascular 

system located at the centre of the brain (and a region in which many aneurysms form). Such a system 

can already be simulated using (coarser) finite element methods, but we use it here as a useful geometry 

for benchmarking. On EPCC ARCHER, we benchmarked with a 15 micrometre resolution geometry 

(777 million fluid sites), and on NCSA Blue Waters we used a 7 micrometre resolution geometry (5.5 

billion fluid sites). Note that in both cases the geometries are highly sparse (<< 1% fluid fraction), posing 

challenges for load decomposition as compared with a dense geometry. 

 

The results of the performance measurements on ARCHER are shown in Figs. 3 and 4 [3]. The profiling 

of the code was carried out using the parallel performance tool, Scalasca (http://scalasca.org/). 

 

 
Figure 3: Strong scaling of HemeLB up to 96k cores on EPCC ARCHER, showing both initialisation 

and simulate phases. 
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Figure 4: Wall clock time and efficiency metric for strong scaling of HemeLB on EPCC ARCHER, up 

to 96k cores. 
 

In Figure 3 we see the speed-up of HemeLB from 3000 cores to 96000 cores, while Figure 4 shows the 

corresponding measured wall-clock time, and measure of parallel efficiency. 

 

There is a negligible amount of MPI collective communication, and the amount of non-blocking point-

to-point communication for data exchange decreases in proportion to computation time. Therefore, 

communication efficiency remains above 0.89. Load balance, however, starts at 0.86 and progressively 

deteriorates to 0.76, such that the overall parallel efficiency degrades to 0.72 once at 96,000 cores. 

 

In our second study, we performed benchmarking of HemeLB on NCSA Blue Waters up to 300000 

cores, using a higher resolution system (with approximately double the number of fluid sites). At such 

a high number of cores and low fluid site count per core (approximately 5000 sites per core) it was more 

challenging to avoid overheads from the use of a profiling tool such as Scalasca, so we focussed only 

on wall clock time per run. The resultant performance data is given in the following table: 

 
Table 1: Data for strong scaling study on Blue Waters plotted in Figure 5. 

# cores # nodes wall clock time (simulate phase) [s] 

16000 1000 3490.868 

32000 2000 1799.434 

64000 4000 0942.717 
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128000 8000 0494.497 

256000 16000 0376.673 

300000 32000 0557.471 

 

 
Figure 5: Strong scaling of memory-optimized HemeLB on Blue Waters, up to 256k cores, for a 5.5 billion fluid site circle of 

Willis geometry. 
 
In Figure 5, we see the results of the strong scaling on of HemeLB on Blue Waters, shown here up to 

256k cores. The performance degradation thereafter is attributed to significant load imbalances (due to 

the difficulty of minimising the communication surface in such a complex, sparse geometry) and the 

very low computational load per core (5000 sites on average). 

 

It was unfortunately not possible to obtain energy usage information from ARCHER or Blue Waters 

(they do not make this information available to users). 

 

2.1.2.2 Node failure rate 

Node failure rate on BW was low, even at 300k cores, although on exascale machines this is expected 

to be a significant issue - monolithic applications will be particularly vulnerable to this. Similarly on 

ARCHER we found a negligible node failure rate under normal conditions - however: when running 

multiple OOM jobs over the whole system, subsequent jobs appeared to fail on the released nodes. 
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2.1.2.3 Conclusions and prediction for Exascale 

Our monolithic test application used in the above performance analysis shows very good strong scaling 

for the given system sizes. However, due to the locality of interactions in the lattice-Boltzmann 

formulation (and hence locality of information transfer) the challenges of efficiently exploiting extreme 

parallelism will likely lie not so much in the simulation phase - a larger or higher resolution input file 

may always be used - but rather in the creation and initialisation of such enormous input files, and the 

physical time scales one may reach (given that processor speed increases little). The focus here on strong 

scaling is precisely due to this practical need for parallelism to increase physical time evolution in the 

system (rather than merely allow physically larger or higher resolution systems) but a more intelligent 

performance model must take into account the trade-off between the spatial and temporal scales, and 

the combinations allowed at different core counts. 

 

To this end, such a performance model has been developed for lattice-Boltzmann simulations (soon to 

be published by [4]) the results of which are shown in Figure 6. 

 

 
Figure 6: Reachable spatial and temporal scales for a lattice-Boltzmann simulation at 10 micrometre resolution, given a 

fixed 1.5 days of calculation time, for cores ranging from 1000 (terascale) up to 1 billion (exascale). 
 
In Figure 6, we see the performance prediction using typical lattice-Boltzmann model parameters (in 

this case for Palabos, but equally applicable to HemeLB), showing the achievable time and spatial scales 

(at 10um resolution) achievable on 1k, 1M and 1G cores (the latter representing exascale). 
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The above has so far considered only the simulate phase of the lattice-Boltzmann application. However, 

as system sizes increase, the initialisation time (during which the load decomposition of the system 

occurs, and ranks read the relevant parts of the geometry into their memory) will also increase. The 

initialisation phase in the Blue Waters benchmark simulations varied (approximately) from 15 to 40 

minutes, with more cores corresponding to longer initialisation. 

 

2.2 Performance of multiscale applications on the Experimental Execution 

Environment 

We now detail performance studies on the Fusion and In-stent restenosis (2D and 3D) applications, 

which were run on the experimental execution environment (EEE). These studies have been run on 

comparatively smaller numbers of processors than the applications listed in the previous section, and 

are unlikely to act as predictors of these applications’ performance at the exascale. Nevertheless, the 

data collected is valuable for informing expectations on petascale machines, as well as (especially in the 

case of Fusion) showing the potential issues with energy consumption at higher core counts.  

 

2.2.1 Fusion 
The strong scaling of the Fusion application across 4 different systems (SuperMUC thin and fat nodes, 

Eagle and Neale) is presented in Figure 7. Measurements of energy consumption on 2 systems 

(SuperMUC and Eagle) are also provided in Figure 8. 

 

The Fusion application is composed of 4 submodels, three of which (A,B,D) are serial and the last of 

which is parallel (C). The submodels are running synchronously (in this version), and we loop over this 

chain to iterate in time at the macro level i.e. (A->B->C->D)->(A...). Only a few iterations are executed 

in this benchmark. The parallel submodel C is composed of 8 flux tubes (or annulus) covering a sublayer 

of the 3D physical space, and each flux tube is discretized with a medium sized grid (128x128x32). 

Submodel C as its own internal time evolution (micro) for which results are averaged before being 

returned to macro level (D,A). Compared to its execution standalone, submodel C requires additional 

collective operation (MPI_Bcast) to send updated input data from process 0 (receiving from MUSCLE) 

to others. This is sub-optimal, but we currently want to treat the submodel as a black-box. The 

performance shown in these figures concerns submodel C (the parallel submodel) only. 

 

For the system considered, the strong scaling levels off around 2k cores. Interestingly, the energy 

consumption seems to increase significantly at this core count, having previously remained relatively 



ComPat - 671564 

 

[D3.3 Report on Instantiating Computing Patterns and performance measurements and prediction of 

HPMC Application]         Page 15 of 21 
 

steady up to 1k cores. This may be a result of excessive communication costs for the problem size, or 

may be indicative of significant increases to come at higher core counts. 

From Figure 8 we can conclude that (in this case) Eagle is providing the same run time at a lower energy 

cost. Our execution plans in the MCP software [1] might therefore use this information to decide to run 

on Eagle for subsequent jobs of this nature. 

 

Figure 7: Wall-clock time to completion for Fusion application on 4 different systems: LRZ SuperMUC (thin and fat nodes), 
PSNC Eagle and STFC Neale 

 

 
Figure 8: Fusion application energy to solution, strong scaled on 2 different systems (LRZ SuperMUC and PSNC Eagle). 
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2.2.2 ISR 2D and 3D 

Performance data was collected for strong scaling of the 2D and 3D In-stent restenosis applications 

(ISR2D and ISR3D, respectively) on the LRZ SuperMUC thin nodes. In both cases, a vessel of length 

1.5 mm and width 1.2 mm, and 1400 cells was simulated. The performance and energy consumption of 

the 2D application is shown in Figs. 9 and 10 respectively. The performance of the 3D ISR application 

is shown in Figure 11. The interpretation of these results is currently still ongoing.  

 

 
Figure 9: Strong scaling run time measurements for ISR2D on LRZ SuperMUC’s thin nodes 
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Figure 10: Energy measurements on LRZ SuperMUC’s thin nodes for ISR2D runs shown in Figure 9. 

 
 
 

 
Figure 11: Strong scaling run time measurements for ISR3D on LRZ SuperMUC’s thin nodes. 

 

2.2.3 Astrophysical application 

 

The performance of the hierarchical astrophysical model (which follows the HMC pattern) was explored 

through the simulation of the evolution of planetary systems in their birth cluster. The cluster consisted 

of 10,000 or 20,000 stars. A simple strong scaling test showed a speedup of 232.1 on 500 nodes with 

respect to 2 nodes (185.62 s and 43082.94 s wall-clock time respectively). The results of a weak scaling 

study on the same system are presented in Figure 12. For the weak scaling, a different number of 

planetary systems (each containing 20 planets) orbit the stars so that each node was fully employed. 
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Figure 12: Weak scaling run time measurements for the hierarchical astrophysical model on Cartesius, for clusters of 10000 

and 20000 stars. 
 

2.2.4 Towards hybrids of Replica Computing and Extreme Scaling 

These two applications are examples of Extreme Scaling, and if we would then need to execute say an 

Uncertainty Quantification on top of these, where we would easily be running some thousand copies of 

the ES application (so, resulting in a Replica Computing of an Extreme Scaling application, or a hybrid 

pattern) this would strongly amplify the need for computational resources. Note that for the two-

dimensional version of the In-Stent Restenosis application this has already been demonstrated [5]. 

Already for this relatively small ISR2D application we needed a substantial amount of resources in order 

to perform the Uncertainty Quantification (order days, running on 128 processors). We are now in the 

process of scaling this up to the 3D version of the model. This work is going to be carried out in the 

recently started FET-HPC VECMA project, leveraging on and using ComPat technology. 
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3   Conclusions 

3.1 Discussion 

The performance work on the Binding Affinity Calculator provides a good indication of how Replica 

Computing (RC) pattern applications are likely to scale under extreme parallelism.  

This includes, to a large extent, the Heterogeneous Multiscale Computing (HMC) pattern, for which the 

greatest computational cost generally lies in the execution of replicas. However, as we have elaborated 

in deliverable D2.2, the dynamic nature of HMC, depending on the quality of the surrogate model to 

capture accurately enough the microscale dynamics, makes this less obvious then for the pure RC 

patterns. I might well be that exascale performance is required in phase 1of HMC (the initial training of 

the surrogate) after which HMC applications could resort to reduced resources. This remains a topic of 

research. In the materials HMC application (UCL), for example, the similarity between 

microsimulations is determined in parallel by the primary model (which is mostly a Finite Element 

Solver), but the costs are dwarfed by those of running the many submodels (replicas). In the less common 

case of an HMC pattern with a very expensive macroscale (primary) model, the performance on exascale 

will likely more closely follow that of the Extreme Scaling pattern. It is our opinion that both RC and 

HMC type of applications are viable candidates for exascale computing, as we have demonstrated on 

several occasions in ComPat. However, we have only been able to ‘scratch the surface’, and more 

research and demonstrators are required to substantiate these conclusions. 

 

In the case of applications following the Extreme Scaling (ES) pattern, the performance of the primary 

model will be of most interest at levels of extreme parallelism. The strong scaling performance studies 

of HemeLB were carried out to test this aspect. Prediction work carried out by Chopard et al. [4] 

indicated (for a general lattice-Boltzmann application) the expected attainability of physical and 

temporal scales with putative exascale systems (1 billion cores) of order 100 s for 10 cm (or 10 s and 

100cm) after 1.5 days of wall clock time. Depending on the problem size, it may be more efficient to 

run at lower resolutions, while using several replicas, in order to derive uncertainties from the 

simulations. Again, we believe that ComPat has demonstrated that ES can scale to the exascale, if the 

primary model is capable of extreme scaling and if the auxiliary models that may serialize the execution, 

are deployed in an efficient way, maybe even by staging two independent ES runs. This was discussed 

and demonstrated in deliverable D2.2 and D3.2. 

 

While more restricted in terms of system sizes considered, the performance of the Fusion application 

(strong scaling levelling off at 2k cores) would appear to support the thesis that uncertainty 
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quantification (via many replica simulations) will likely be a more efficient use of exascale resources. 

Performance studies on the ISR2D and ISR3D applications also point to the use of UQ as a good way 

forward. As pointed out above, in the recently started VECMA project we are going to proceed to create 

hybrids of ES applications (such as Fusion or ISR) and RC, to facilitate Uncertainty Quantification. In 

VECMA we will also explore more advanced ‘semi-intrusive’ Uncertainty Quantification algorithms, 

which can be mapped to the HMC pattern. In other words, in VECMA we will also be exploring hybrids 

between ES and HMC, when implementing the semi-intrusive Uncertainty Quantification algorithms 

for ES multiscale applications. 

3.2 Impact of exascale resources on future science applications 

The major conclusion of this work is the excellent performance of replica based calculations to extreme 

parallelism supercomputing. While this is directly applicable to RC or HMC applications in phase 1 of 

the performance cycle, the efficient use of ES applications may need more careful treatment (depending 

on the physical and temporal scales of the process of interest). One way will likely be to respond to the 

growing desire for uncertainty quantification (UQ) in computational science, leveraging the efficiency 

of replica computing on exascale systems by running several ES applications in the same allocation. 

This will have the benefit of rendering the simulation output “actionable”, in the sense that UQ will give 

users more faith in the applicability of the results and thus greater ability to make decisions thereon. 

Additionally, Replica Computing is typically more resistant to node failures. 

 

We therefore expect that the actual impact of exascale resources on multiscale computing is likely to be 

to encourage the use of replica based computing patterns (RC or HMC), and quantifying uncertainties 

in larger simulations (such as the primary model of the ES pattern) which is not feasible with present 

day petascale facilities. 
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