
This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 671564.

D2.3 Final Report on Multiscale Computing

Patterns including their Performance

Due Date Month 36

Delivery Month 36

Lead Partner UvA

Dissemination Level Public

Status Final

Approved Internal review

Version 1.0

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 2 of 24

DOCUMENT INFO

Date and version number Author Comments

20.08.2018 v0.1 Alfons Hoekstra Skeleton of report, first intro text.

02.09.2018 v0.2 Alowayyed, Luk, Hoenen First full version

04.09.2018 v0.3 Alfons Hoekstra Edited first full version, addition
of missing paragraphs.

04.09.2018 v0.3 Alowayyed, Hoenen, Bosak,
Vassaux, Luk

Add missing paragraphs and
check text coherency

06.09.2018 v0.4 Saad Alowayyed Merge to the new version
maintain equations and add to
the conclusion.

13.09.2018 v0.5 Hoekstra, Alowayyed Finalise first draft
20.09.2018 v0.6 Saad Alowayyed Update structure and reviewers

feedback
24.09.2018 v0.7 Alowayyed, Vassaux, Luk HMC results and fusion example

feedback
25.09.2018 v1.0 Hoekstra, Alowayyed Final version

CONTRIBUTORS

Contributor Role

Alfons Hoekstra (UvA) Editor, PI and WP2 leader

Saad Alowayyed (UvA) contributor

Onnie Luk (MPG) contributor

Oliver Hoenen (MPG) contributor

Bartosz Bosak (PSNC) contributor

Maxime Vassaux (UCL) contributor

David Coster (MPG) Internal reviewer

Tomasz Piontek (PSNC) Internal reviewer

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 3 of 24

TABLE OF CONTENTS

1	 Executive summary 4	

2	 Report 4	

2.1	 Introduction 4	

2.2	 Multiscale Computing Patterns and related Algorithms and Software 5	

2.3	 The Multiscale Computing Patterns and Algorithms software 7	

2.3.1	 Design and Implementation 8	

2.4	 Using the Multiscale Computing Patterns and Algorithms software 11	

2.4.2	 Heterogeneous Multiscale Computing 14	

3	 Conclusions 23	

4	 References 23	

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 4 of 24

1 Executive summary
After a short review of the Multiscale Computing Patterns and related software, this deliverable reports

the main developments and the workflow of the Multiscale Computing Patterns and Algorithms

software. The Multiscale Computing Patterns Algorithms and software has been extended with new

capabilities, most notably the performance database with is filled using tools from WP4 and is used by

the Pattern-Driven planner to propose candidate deployment and execution plans, based on

measurements of the single scale components, to the QCG pattern aware planner. Second, automating

the benchmark process, to run on all EEE HPC resources, to populate the database and make the

performance data available when requested. An example of using the Multiscale Computing Patterns

and Algorithms software is illustrated, showing that a wide range of variables for Multi-objective

Optimisation algorithms can be chosen.

The third and final pattern, the Heterogeneous Multiscale Computing pattern, has been

implemented, and first benchmarks that demonstrate how to deal with the inherently dynamic nature at

runtime of applications that utilise this pattern have been performed. This mainly involves an adaptive

and dynamic load-balancing scheme that orchestrates micro-scale simulation. Two examples of different

HMM application are illustrated.

2 Report

2.1 Introduction

The goal of Work Package 2 is, quoting from Part A of the Description of the Action (DoA), to “create

a general mapping from a multiscale model to a multiscale computing pattern. Reusable software

components will be created for each of the three computing patterns. MML specifications of multiscale

models will be modified to include these components, and the modified MML will be converted to input

for the high-level tools (WP4) and middleware (WP5). The performance of the patterns will be tested

and predicted.”

This deliverable D2.3 will, quoting again from the DoA, “report on the performance of all

selected multiscale applications as measured on the Experimental Execution Environment and selected

production environments. It will give a detailed account of various metrics of resource usage, including

wall clock time, data throughput, scalability and energy consumption. It will also provide a detailed

account on the performance prediction models.” Most of the application specific measurements will be

reported in deliverable D3.3 and performance profiling is part of deliverable D4.3. Here we will describe

new results, building upon deliverables D2.1 and D2.2, that are generic to the Multiscale Computing

Patterns. It is mainly based on work performed in task 2.3 (Development of the multiscale computing

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 5 of 24

patterns, which was extended with 6 months to M30) but also on 2.4 (profiling and performance

measurement) and task 2.5 (Performance prediction modelling).

In deliverable D2.1 we wrote that “converting MML for ComPat, task 2.2, has partly been

addressed” and “we will therefore continue to put effort in this task, slightly deviating from the original

DoA and extending this task into the second year of the project”, followed by deliverable D2.2 where

we wrote that “we have now reached a point, given the current design of the Multiscale Computing

Patterns (MCPs), that the information needed by them should not be embedded in MML, but provided

as separate component. This specifically relates to performance data of the single scale models, as

described in section 2.3.1 and illustrated in section 2.4. We have, however, decided to not close task 2.2

yet, as further development of the MCPs may warrant updates to MML.” We have now reached a final

conclusion that updates of MML are not needed for the MCPs, closing task 2.2.

The further development of the actual patterns, task 2.3, has been the major focus of WP2 during

M18 to M36 of the project. In collaboration with WP3, WP4, and WP5 and building upon the conceptual

design of MCPs as reported in deliverable D2.1 and the Multiscale Computing Patterns and Algorithms

software that was described in detail in deliverable D2.2, as demonstrated for specific applications in

deliverable D3.2, we have now finalised the design for the specific architecture for the Multiscale

Computing Patterns and Algorithms software, in line with the overall ComPat architecture described in

deliverable D5.1. We have implemented all its main features, and worked out examples to illustrate

some of these concepts.

The main developments, for the period of M24 - M36, were on the performance measurements

database and how to integrate this component with the Optimisation component of the MCP and

Algorithms software to predict the performance of the multiscale application based on measurements of

the single scale components. Another major addition was to automate the benchmark process to populate

the database and make the performance data available when requested. In addition to time-to-completion

metrics, energy consumption was profiled and used as a criterion in the MCP and Algorithms software.

Finally, the HMC pattern has been realised, implemented, and first tests have been performed.

This deliverable will first quickly review the MCPs (as described in detail in deliverable D2.1)

and the design of the Multiscale Computing Patterns and Algorithms software (as described in detail in

deliverable D2.2), and then continue to describe and illustrate further developments and

implementations of the Multiscale Computing Patterns and Algorithms software, including realisation

of the third MCP, the Heterogeneous Multiscale Computing.

2.2 Multiscale Computing Patterns and related Algorithms and Software

As a courtesy to the reader, and to keep this deliverable self-contained, In this section we provide a short

summary of Multiscale Computing Patterns, as described in detail in deliverable D2.1 and the Multiscale

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 6 of 24

Computing Patterns and Algorithms software, as described in detail in deliverable D2.2. We do refer

the reader to deliverables D2.1 and D2.2 and [1,18] for all details, including worked out examples.

We define Multiscale Computing Patterns (MCP) as “high-level call sequences that exploit the

functional decomposition of multiscale models in terms of single scale models” [1]. We have identified

three computing patterns that we believe are most relevant for high performance multiscale computing,

namely: Extreme Scaling (ES), Replica Computing (RC) and Heterogeneous Multiscale Computing

(HMC).

The Extreme Scaling computing pattern represents a specific class of multi-scale applications

where one (or perhaps a few) of the single scale models in the overall multiscale model dominates all

others, in terms of computational and/or energy cost, by far. Such a dominating primary model is

expected to scale to very large systems (i.e., multi-petascale or above) and the efficiency of the primary

model largely determines the efficiency of the multiscale application. Consequently, one of our goals is

to ensure minimal interference by the other single scale models, so-called auxiliary models. These

typically have a much lower computational and/or energy cost, and could even be sequential codes [1].

Replica Computing is a multiscale computing pattern that combines a potentially very large

number of terascale and petascale simulations (also known as 'replicas') to produce scientifically

important and statistically robust outcomes. The replicas are not part of a larger spatial structure (as is

the case in Heterogeneous Multiscale Computing), but they are applied to explore a system under a

broad range of conditions. Replica Computing is set up through an initialisation stage, which determines

the simulations required to explore or incorporate a given parameter space. This initialisation is then

followed by one or more sequences of simulation and data processing [1].

Heterogeneous Multiscale Computing pattern will be presented and discussed in depth in

section 2.4.2.

The key idea is that we define generic task graphs for each pattern, such that application specific

task graphs can be embedded in the generic task graphs. We use the generic task graph to obtain an

optimised mapping of the application to an HPC resource, and try to find generic algorithms for this. An

MCP therefore is a tuple of a generic task graph plus data or models on the performance of single scale

models, a specification of a specific multiscale application in terms of the xMML and a set of algorithms

and heuristics that combine this into detailed input/configuration files for the execution environment

[1].

We have designed, implemented, and tested a first version of the Multiscale Computing Patterns

and Algorithm software [18]. This software consists of Description, Optimisation and Execution

components.

The Description component translates the task graph, representing a multiscale simulation, to a

particular type of multiscale computing pattern. Second, the Optimisation component selects and

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 7 of 24

applies dedicated algorithms to find the most suitable mapping between submodels and available HPC

resources. Third, the Execution component involves a middleware layer that maps submodels to the

number and type of physical resources based on the suggestions proposed by the Optimisation part

together with infrastructure-specific metrics such as (expected) queueing time and resource availability.

The main purpose of the Multiscale Computing Patterns and Algorithm software is to leverage

the multiscale computing patterns to simplify and automate the execution of complex multiscale

simulations on high performance computers, and to provide both application-specific and pattern-

specific performance optimisation [18].

2.3 The Multiscale Computing Patterns and Algorithms software

The development of the Multiscale Computing Pattern and Algorithms software is shown in Fig. 1. This

figure is similar to the one shown in D2.2 and [18] with more technical details.

Figure 1: ComPat stack developement status and plans

Figure shows the main components that comprise the MCP and Algorithms software (i.e., Description,

Optimisation and Execution). In the next subsections, we will report the developments and the workflow

of the MCP and Algorithms software on two mode; the normal “run” and the “benchmark” mode.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 8 of 24

2.3.1 Design and Implementation

The next subsections show the new and integrated components of the MCP and Algorithm software on

the three different parts; the Description, Optimisation and Execution.

Description part

The translation service from the Description part has been redesigned and now takes user input to allow

a seamless integration with the Fabsim tool. In terms of the embedded algorithms, the only modification

is the addition of a module to parse the application task graph (obtained from xMML) and determine

from it a formula to estimate the overall time of the application depending on the time spent in each

submodel involved. This formula is stored within the inputs of the Pattern-Driven Planner (as

modeltime) and will later be used by the Optimisation part to predict the makespan for a given

configuration. An example of this is shown in section 2.4 .

Optimisation part

We have implemented the performance database to store, retrieve, query and interpolate performance

data of the single scale components take make up a multiscale simulation in a faster and semi-automated

form. The database is deployed in the LRZ SuperMUC facility and is accessible from the QCG head

node. This database contains information of multiscale runs, different kernels with their main

parameters, the detailed kernel performance / energy matrices and systems involved node types. The

kernel performance includes all the information needed to do full performance measurements and

predictions such as the overall run time, muscle time with communication between kernels, mpi time

represent the communication within a kernel, IO time and energy profiling data (for more in-depth

information we refer to deliverables D4.3 and D6.3).

The node types are detected automatically from the middleware. Currently, this is done by

requesting the available nodes number of cores per node and number of nodes.

To populate the database, the MCP and Algorithms software has an option to run in

“benchmark mode”. In this mode, the problem size is smaller or the duration is shorter than the original

run. The link between the benchmark problem and the production run problem have to be dynamically

interpreted in the database as a set of parameters. The scale factor, between different parameters, is an

input to the Pattern-Driven Planner part of the MCP and Algorithms software. Figure 2 illustrates the

benchmark run mode.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 9 of 24

Figure 2: Multiscale Computing Pattern and Algorithms software workflow in benchmark mode.

First, the Pattern-Driven Planner takes the description of the single-scale and multi-scale as input. Next,

the Pattern-Driven Planner generates different execution plans -in QCG scripts box- to ensure running

the benchmark problem in all node types and hosts where each single-scale model is available, and on

each possible set of core count determined from information provided by each single-scale model. This

information can be the minimum and maximum number of cores, and possibly an expression to calculate

all valid numbers within this range. The information on the amount of memory required per core is not

implemented in the system, however, the user can decide to make a submodel non-available on a given

node type if this node type has less than the minimum required memory to run the code.

After all valid execution plans have been set up, each execution plan is modified to call the

MAP profiling tool (see deliverable D4.1 and D4.2) for each single-scale model, and an additional stage-

out phase is added to collect all the performance profiles. These additions can be done automatically or

necessitate the user to set up specific inputs for the MCP and Algorithms software, depending on the

use-case. Staged-out performance profiles are then automatically uploaded to the database, from which

they can be further queried in order to predict the performances of further runs that can be compared or

extrapolated from these benchmarks (see Figure). This is the way to do automated benchmarking of

multiscale applications on the MCP and Algorithms software to seamlessly schedule and deploy a

multiscale simulation in the most efficient way to a supercomputing environment, meeting the

constraints of both the user and the owners of the supercomputing facility.

Figure 3: Multiscale Computing Patterns and Algorithms software workflow in run mode.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 10 of 24

Figure shows the workflow of the normal run. In this mode, the Pattern-Driven Planner generates,

using the same mechanism as in benchmark, a number of execution plans. The different is that for each

execution plan we had queried the database to predict the performances (time, energy, etc), which are

compared or extrapolated from the benchmarks runs we launched. Each execution plan is filled with

time, energy and efficiency numbers. Then, they are ordered based on the criteria chosen time-to-

completion, energy consumption, and efficient usage of resources (see section 2.4 for example) in one

QCG script. QCG will then calculate the queue time using the Queue Time Prediction Service (see D6.3)

and re-order these plans based on the new information (for further details we refer to D5.3 section 2.3).

If the profile option is on “–P option”, then a MAP profiler will be used like what we did for the

benchmark and the database is updated automatically.

We originally planned to include a simulation of the resources on which the multiscale models

would be executed. Such component would allow estimating the performance of the single-scale models

on some architecture, and with that information, the behaviour of a multiscale application could be

estimated. This is certainly an interesting option to have to explore the behaviour of MCPs and

multiscale applications expressed in terms of MCPs on non-existing architectures. Our MCP and

Algorithms software is completely ready for this option. Unfortunately, we have not been able to deliver

this option. Having the choice on spending our resources on hardening and finalising key components

in our software stack, or adding an additional new component, we opted for the first. In this way, we

have a fully functional software stack that can be used for existing Tier0 machines. Unfortunately, we

cannot predict (yet) the behaviour on future machines. This we consider future work.

Execution part

The new QCG schema expose a set of new capabilities provided on a middleware layer and tailored to

enable multi-criteria brokering as well as to improve the support for energy-efficient execution of High

Performance Multiscale Computing application on computing resources. The newly implemented

pattern-aware brokering plugin for QCG-Broker allows selecting execution resources based among

others on time to completion, energy-usage and CPU-Hours-usage metrics. In order to support the first

metric, i.e. time-to-completion, the new brokering plugin has been integrated with an additional new

component implemented based on the cooperation between WP5 and WP6, the Queue Time Prediction

Service, which provides statistical estimations for queueing time. For more information, please refer to

the deliverables D5.3 and D6.3.

A new component was implemented to support HMC pattern, the pilot job. It is a normal job

submitted to supercomputers to reserve resources and use the resources as a unified unit. The QCG Pilot

Job Manager system has a similar mechanism by allowing the management of the resources on the

application level. The pilot job is akin to a traditional job array, but it allows the scheduling and

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 11 of 24

execution of small and dynamic jobs with different resource requirements. For more details, we refer to

D5.3.

2.4 Using the Multiscale Computing Patterns and Algorithms software

In this section, we will first report the usage of the MCP and Algorithms software and then we will

discuss the third and last pattern, the Heterogeneous Multiscale Computing pattern, in more details.

2.4.1 Example -- Fusion

As reported in deliverables D2.2 and D3.2, the global turbulence (fusion) application fits into the

Extreme Scaling computing pattern, for one of the single scale submodels (turbulence model) is scalable

and requires the majority of the computing resources when compared to the rest of the submodels

(equilibrium, flux-to-transport-coefficient module, and transport models). The workflow topology is

illustrated in Figure 4. The turbulence (TUR) is simulated by the GEM code, equilibrium (EQU) by

CHEASE, transport (TRA) by ETS, and module (FDV) by IMP4DV. Each one of these submodels are

wrapped around by a MUSCLE2 kernel. For details of fusion software we refer to deliverable D3.1.

Figure 4: The topology of the fusion application.

This topology is an input to the coupling tools used (MUSCLE2) in form of connection schema

represented in xMML. The MCP and Algorithms have the ability to automatically detect the topology

and “propose” a multi-scale performance model as discussed in section 2.3.1. This model can be

reviewed by the user and changed accordingly. In Figure 4, the multi-scale performance model is the

sum of all components as one “motif”. Other workflow topology (not presented in this deliverable) is

assembled and tested. In that workflow, the GEM and CHEASE can be initiated at the same time and

the multiscale performance model is the sum of the ETS, IMP4DV, and the maximum time between

GEM and CHEASE.

 The MCP and Algorithms software provides the ability to generate and possibly submit

a set of benchmark cases to all HPC resources available in the EEE. These resources include LRZ

SuperMUC’s Thin, Fat, and Haswell node types; PSNC Eagle’s Haswell-64, Haswell-128, and Haswell-

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 12 of 24

256 node types; STFC Neale’s IvyBridge node type. A set of benchmarks contains five cases, where

each case uses a different number of cores required by the kernels.

 Each time we submit a set of benchmarks, the MAP integrates into the MUSCLE2

environment to monitor the performance of kernels and obtains performance profiles as shown in section

2.3.1. The performance numbers include runtime, time spent in MUSCLE2 operation, time spent in

MPI, and energy consumption of the kernel. These profiles are then recorded into a database, and in the

future the data can be extracted to produce estimated performance metrics for the multiscale application.

There are three performance metrics that are taken into account: time to completion T, efficiency ε and

total energy Etot. While time to completion is straightforward, the efficiency and total energy

consumption are not. The efficiency is defined as

ε = (NP TP+ NaTa) / (N T),

with NP, Na, and N as the number of cores for primary, auxiliary, and multiscale models, respectively;

and, TP and Ta as the time spent in the primary and auxiliary models, respectively. The total energy

consumed by the multiscale application is the sum of energy consumed by all MUSCLE2 kernels. This

can contribute towards the next generation exascale computers, especially when energy consumption is

heavily discussed as a measure of resource usage.

 For the rest of this subsection, we present several examples. We request from the MCP

and Algorithms software the best execution plans based on multiple criteria: time-to-completion,

efficiency and energy usage. In this run, we ask for all the set of available executing configuration for

the multiscale application running on minimum of 128 and maximum of 4099 cores. In addition, this

instance of Fusion consists of two “kernels” ETS and GEM. We configure GEM to run on 128 – 2048

cores, while ETS runs on one core. We set the MCP and Algorithms software, in the following runs, to

show the best three plans (-M 3 option).

Time-to-completion

In this example, we run the default behaviour of the MCP and Algorithms software. Here we request the

minimum time-to-completion of fusion multiscale application on all the node types available on EEE.

This small run, a benchmark run, consists of 4 multiscale iterations (motifs). The Pattern-Driven Planner

will generate the following plans:

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 13 of 24

Table 1: Execution plans generated from the Pattern-Driven-planner for a small run with 4 motifs. These plans are ordered

by the time-to-completion.

Plan name Plan time
(seconds)

Cores / sub-model Energy
(Joules)

Node type Efficiency

Plan0 1960.56 (1,2048) 4155313.31 Haswell_64 0.91
Plan1 1972.79 (1,2048) 4720715.21 Haswell_128 0.92
Plan2 1997.92 (1,1024) 2605986.11 Haswell_64 0.93

We notice that each one of the plans listed in Table 1 are local to a node type. This is true in ES, unless

there is a restriction such as running one code on one machine and other codes on another machine. The

long communication time between different nodes, which is represented in the database under MUSCLE

time, is the main reason to avoid the options of different node types. In addition, all plans are listed in

the ascending order of time-to-completion. In the plan time, we added a safety limit time to the real run

time. The safety limit time, which is set to a default value of 1800 seconds, is used to avoid the hard

wall-clock limit that might occur due to the external factors (e.g., wake-up node times). The first plan,

for example, has a real run time of 160.56 seconds to run 4 motifs.

 Next, we show a “production” run, with a large number of iterations. In this run, we

increase the number of iterations (motifs) from 4 to 300. By using the same setting as before, the Pattern-

Driven Planner generates plans listed in Table 2:

Table 2: Execution plans generated from the Pattern-Driven-planner for a large run with 300 motifs. These plans are

ordered by the time-to-completion.

Plan name Plan time
(seconds)

Cores / sub-model Energy
(Joules)

Node type Efficiency

Plan0 13882.18 (1,2048) 312687325.6 Haswell_64 0.91
Plan1 14802.42 (1,2048) 355233820.1 Haswell_128 0.92
Plan2 16693.63 (1,1024) 196100453.9 Haswell_64 0.93

We notice that the generated plans are scaled with the change of this global parameter (number of

motifs). In the database, the performance values are normalised with this value. The current problem is

~ 75 times larger than the previous example. The real run time of the first plan, after taking out the safety

limit time, is 12080 seconds (3.3 hours), which is ~75 times longer. This scaling exercise can be done

for the local parameter of the single-scale models as well. The same mechanism applies to the energy

consumption.

Efficiency

In this example, we demonstrate the efficiency criterion (-E option) in the same way as the previous

example. However, we only choose from the nodes available in SuperMUC. This is done using “-H

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 14 of 24

HOSTNAME”. By choosing the efficiency, the execution plans are chosen based on the shortest time

first, then, we order the first n plans based on efficiency.

Table 3: Execution plans generated from the Pattern-Driven-planner for a small run with 4 motifs. These plans are ordered

by the efficiency.

Plan name Plan time Cores / sub-model Energy Node type Efficiency
Plan0 70403.3 (1, 128) 226717053.7 Thin 0.96
Plan1 44501.06 (1, 256) 256033981.7 Thin 0.94
Plan2 31549.94 (1, 512) 338506140.6 Thin 0.92

The resulting execution plans are, as expected, request less core counts compared to the previous

examples. The efficiency can be seen as the effect of the auxiliary single-scale models on the multi-scale

execution time.

 After defining, discussing, and providing proofs of concept for two computing patterns

(namely Extreme Scaling and Replica Computing) in deliverables D2.2 and D3.2, we will now report

on the third and most dynamic computing pattern, heterogeneous multiscale computing (HMC) [1].

Moreover, the results of two HMM applications using the Optimisation part are presented.

2.4.2 Heterogeneous Multiscale Computing

The HMC pattern implements a family of multiscale models which, using the MMSF terminology, are

single domain with multiple and dynamic instantiations of the micro-scale dynamics, utilising a

call/release coupling template [2]. The heterogeneous multiscale method [3,4] represents the most

obvious multiscale model that fits the HMC patterns, but other examples would include running

uncertainty quantification on extreme scaling applications using so-called semi-intrusive algorithms [5].

The later will be further explored and developed in the recently started FET-HPC project VECMA.

 In this set of multiscale applications, a complex phenomenon is modelled by employing

a numerical solver for the macro-scale equations and obtaining missing properties (e.g., constitutive

equations) from suitable micro-scale simulations. Hence, the macro-scale model(s) are coupled, usually

for each iteration, with a large and dynamic number of micro-scale models (Figure 5).

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 15 of 24

Figure 5: The computational structure of hierarchical multiscale applications.

The HMC pattern is based on, and inspired by, the hierarchical multiscale method (HMM) [4]. The

primary potential and advantage of HMM is capturing of the dynamics at the macro-scale level by

considering some microscopic details of the problem. Thus, HMM is a modelling technique used to

numerically solve multiscale problems by coupling multiple submodels together, each of which solves

a component separately. An overall macro-scale model then emerges when the separate submodels are

combined. Micro-scale models are employed to resolve each unknown component of the problem

separately and return the result to the macro-scale model. In this case, heterogeneous suggests that the

problem is multi-physical in nature [6]. Frameworks taking into account the computational aspects of

HMM, certainly in relation to HPC, are rare [1,7]. For this reason, we propose heterogeneous multiscale

computing.

 From a computational point of view, the potentially large number and dynamic nature of

the number of required micro-scale models, which are determined at runtime, can become a bottleneck

in production runs [1]. The number of micro-scale models also depends on the spatial properties of the

macro-scale model [8]. Moreover, micro-scale models can be computationally intensive. Figure 6 shows

the execution time of the micro-scale model as a function of the number of processors. In the micro-

scale, we simulated the red blood cells and platelets suspensions in plasma using HemoCell [14]. In this

specific benchmark, it is clear that the minimal execution time is obtained using 16 processors.

Increasing the number of processors to more than 16 actually increases the execution time. This is a

well-known phenomenon in strong scaling of parallel applications, and is due to increasing overhead

time as the number of processors increases. Thus, in this example, the boundary limits for the number

of processors for the micro-scale models are Pmin= 1 and Pmax = 16.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 16 of 24

Figure 6: Average performance of the cell-suspension LBM solver, representing micro-scale models.

To reduce the large number of micro-scale models, a surrogate model should be utilised in between the

micro- and macro-scales. The surrogate model contains a database that is used to store data to avoid

duplicating calculations and to build a surrogate model (e.g., based on a Gaussian processes) to conduct

interpolations for similar parameters. This process decreases the required number of micro-scale models

requested, which in turn decreases computation time. Generally, this solution is practical and has been

used in multiple fields [9,10]. In this example, we replaced this process with performance figures, which

mimic the operation.

Surrogate model performance analysis

The number of micro-scale models changes with every macro-scale model iteration and is highly

dependent on the state of the surrogate model. For this, we need to analyse the performance of the

surrogate model per time step (g(t)) as follows:

𝑔(𝑡) = 	 𝜂((𝑡)	 /	 𝐷𝑜𝐹,

where DoF is the total number of degrees of freedom of the macro-scale model and 𝜂((𝑡) is the number

of successful calls to the database per marco-scale time step, which replaces the need to generate micro-

scale jobs.

 The performance of the surrogate model will vary the number of micro-scale models

needed for each macro-scale iteration significantly, which can lead to load imbalance and low utilisation

of the available resources. Thus, the main target of the runtime optimisation part of MCP and Algorithms

software is to schedule this dynamically varying load of micro-scale models in an optimal way on the

available resources.

 The value of g can vary for cases where the user is building the surrogate from scratch

(𝑔 → 0), where the surrogate model is replacing the micro-scale models efficiently (𝑔 → 1) or for in-

between scenarios. To deal with the distribution of the number of processors in all these cases, we define

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 17 of 24

three different phases in HMC and the corresponding processor distribution mechanism is shown in

Algorithm 1.

Algorithm 1: HMC phases

1: procedure HMC(g(t), DoF, Pmin , Pmax , Pµ)

2: η(t) = DoF (1 − g(t))

3: if η(t)Pmin > Pµ then . Phase 1

4: run(η(t), Pmin)

5: else if η(t)Pmin < Pµ < η(t) Pmax then . Phase 2

6: run(η(t), Pµ / η(t))

7: else . Phase 3

8: run(η(t), Pmax)

9: end if

10: end procedure

The important elements in Algorithm 1 are the number of processors reserved for all micro-scale models

Pµ, and η(t), the number of micro-scale models in time step t. If Pµ < Pmin η(t), then the most appropriate

action to take is to do farming by running each micro-scale model with a minimal number of processors

Pmin. On the other hand, if Pµ < Pmax η(t), then running with Pmax is the most suitable choice. Otherwise,

for Pmin η(t) < Pµ < Pmax η(t), all micro-scale models must be run on 0𝑃2 𝜂(𝑡)⁄ 4, limiting it to not more

than Pmax, which is the maximum number of processes that the model can benefit from before the

performance decreases. Also, if the performance values of running the micro-scale models using

different parameters are available or can be estimated, as shown in HMM_materials, the number of

processors per micro-scale model can be changed accordingly in the second phase. We will apply this

concept to a case for the surrogate model starting from scratch.

 Figure 7 shows the performance of a surrogate model (top), expressed by g(t) and the

corresponding number of micro-scale jobs (bottom) of the surrogate model under investigation. In this

example DoF = 48818, Pmin = 1 and Pmax = 16. The colours show the three phases, as introduced above.

Phase one, where the farming of jobs is done using Pmin processors per micro-scale model, is represented

in green. Phase two is shown in blue and the third and final phase is shown in red. The dashed lines in

the figures are the micro-scale model iterations. Figure 7 shows a surrogate model with good

performance. This performance figure is based on results from a simulation in which this "surrogate

model" was actually implemented [10] with modification at the first few macro-scale iterations to mimic

the case of a new surrogate model.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 18 of 24

Figure 7: Performance of a surrogate model generated from scratch. Top graph shows the performance values of the

surrogate model and lower graph shows the corresponding numbers of micro-scale jobs. The colours refer to the phases,
where green is the first phase.

As shown in Figure 7, the first phase of the new surrogate model requires more jobs at the beginning to

build the surrogate model. This phase also takes more macro-scale iterations to complete. Note that the

number of micro-scale jobs per iteration is calculated as 	 𝜂(𝑡) = 𝐷𝑜𝐹(1 − 𝑔(𝑡)). However, in the first

phase we do not run the total number of 48818 jobs, but we run batches from which we can then train

the surrogate model. In the second phase, the number of micro-scale jobs is less than the number of

micro-scale jobs in the first phase. Knowing that it is not beneficial to run a micro-scale job utilising

more than Pmax processors, and the time to run a micro-scale job varies with the number of processors

and the input parameters, we might end up having a number of idle processors. We can use these free

processors in the second and third phases to further explore the parameter space of the micro-scale model

for better performance of the surrogate model, or even change the number of processors per micro-scale

model based on different input parameters for each micro-scale model. In the third phase, it is preferable

to release unused processors back to the system, to save on the budget. Generally, switching between

phases will be totally dynamic and the runtime part of the MCP and Algorithms software should handle

this process, as will be illustrated in the next sections. We also note that it might even happen that during

the runtime of the HMM we switch back and forth between the different phases, completely depending

on how we traverse the parameter space of the microscale jobs. However, the hope is that, by using

advanced surrogate modelling techniques and proactively computing in unexplored parts of parameter

space, we can keep training the surrogate model to perform very well. This however remains to be

investigated, and was not part of the work done in ComPat.

 Our proposed solution is to use the resources dynamically supported by the architecture,

with the assistance of tailored scheduling controlled by the pattern. For the architecture, we will use the

pilot job mechanism.

 We executed our experiments on Eagle [16], a supercomputer at the Poznan

Supercomputing and Networking Center (PSNC) in Poznan, Poland. The QCG pilot job used in this

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 19 of 24

work was a normal job submitted to Eagle to reserve a set of resources. After reservation, these resources

were then managed using a python script, the Pilot job manager. In this script the user can launch, request

and kill jobs dynamically. In our benchmarks, the Pilot job reserves a number of processors first. Then,

in the Pilot job manager, we submit the macro-scale model and the HMC manager. The macro-scale,

after an iteration, requests a number of parameters to the surrogate model. The surrogate model looks in

the database, interpolates the missing quantity and requests to run a number of micro-scale models for

the missing quantities. The number of micro-scale models and the available resources are then sent to

the HMC manager to suggest the right distribution of the resources to the Pilot job manager. In addition,

it acts to different phases of the HMM application accordingly. The pilot job manager then executes the

submodels utilising an internal queue on the required resources, gathers the values from the micro-scale

jobs and sends them back to the surrogate model. For more information on the QCG pilot job, we refer

to D5.3.

Preliminary results – RBC application

We measured the runtime and utilisation for the performance shown in Figure 7. Resource utilisation U

is defined as U = R / C, where R is the actual used number of processors and C is the capacity, which is

the total number of processors available for the job. The utilisation was measured as a function of wall

clock time during the execution.

 In this experiment, the number of processors allocated for the macro-scale model was PM

= 8, for the surrogate model PD = 1 and for the HMC manager PH = 1. The total number of processors

available for the micro-scale models was Pµ = 206. The degree of freedom selected, for simplicity, was

DoF = 48818.

 Figure 8 (top panel) presents the utilisation of the system, using our strategy, for the

surrogate model presented in Figure 7.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 20 of 24

Figure 8: Utilisation of the system (top panel) by using the surrogate model, as shown in Fig 4. The corresponding number of

micro-scale jobs (middle panel) and number of processors per micro-scale job (lower panel) were decided by the HMC
manager.

In Figure 8 (top panel), in the first macro-scale iteration, a large number of micro-scale jobs are executed,

each executing with Pmin = 1 in a first-in, first-out queue (in our method, we use sub-queues in the pilot

job rather than in batches). The utilisation in this phase is high because we simply exploit all available

resources. At the beginning, the utilisation is one, which means that all 206 processors are used as shown

in Figure 8 (middle panel). After a while, ~ 18-32 jobs are completed, shown as the first few small

decreases of the green line.

 The blue line in Figure 8 (top panel), for the second to fifth macro-scale iterations, shows

Pmin η(t) < Pµ < Pmax η(t) phase. The utilisation at the beginning of these iterations is one, because all the

processors reserved for micro-scale models are used by running the micro-scale models with η(t), ⌈Pµ /

η(t)	 ⌉. For example, in the second macro-scale iteration (which lasted from 800 to 1100 minutes of the

runtime), 142 jobs were run with ~ 2-1 processors, each shown in Figure 8 the middle and lower panels,

respectively. As a result of different micro-scale model execution times with different numbers of

processors per micro-scale model invocation, we notice a gradual decrease in the utilisation. In this

situation, an internal mechanism could be implemented to use the available processors to refine the

surrogate model by proactively (so not informed by the macro-scale model) executing micro-scale

models in yet unexplored regions of the micro-scale input parameter space. The gradual decrease in the

second macro-scale iteration does not occur in the next iterations (macro-scale iterations 3 to 5), because

the number of micro-scale model jobs in iteration 4, for example, is smaller (54 running with ~ 4

processors shown in blue in Fig. 8 (middle and lower panels)).

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 21 of 24

 The last macro-scale iteration in Figure 8 (top panel) falls in the third phase, where the

number of micro-scale jobs is only 12, and the number of processors per micro-scale job run is Pmax =

16. As is shown clearly by the red line in the graph and also the red lines in Figure 8 (middle panel), we

run all the micro-scale models in one fast run. This phase is fast, but the utilisation remains low. In this

state, as discussed, we could release the unused processors, as the surrogate is mature enough to replace

the need to generate new micro-scale jobs.

Preliminary results -- HMM-Material application

In this application, the Optimisation part investigate the main issue related to the execution of the HMM-

Material. In this application, the number of micro-scale models is static, because of the lack of surrogate

model. However, the variable execution time of the single micro-scale jobs would case a load imbalance.

The left panel of Figure 9 shows the strong scaling of one strains tensor setup and the right panel is the

execution time of the micro-scale models with different strains tensors normalisation. For more

information on the HMM-Material application, we refer to D3.1.

Figure 9: The execution time of micro-scale md simulations using the same configuration on different number of cores (left
panel), and on the same number of cores with different stain tensor configurations (right panel).

The micro-scale jobs are executed in the order they figure in the input file until the global resource

allocation given to the PilotJob is filled, the following jobs are set in a single queue. In the Optimisation

part, we developed an optimisation routine for the execution of the list of micro-scale jobs with the QCG

PilotJob system: time-to-completion and efficiency are the two potential optimised criteria. The

optimisation is performed controlling the combination of resources allocated to each micro-scale job

and the order it appears in the micro-scale jobs list.

Resources allocation for individual micro-scale jobs are determined differently depending on

the optimised criteria. Although in both situations, the allocated resource is determined using

performance data of the micro-scale scale model, and more specifically the speedup. In the efficiency

approach, the resources provided to the micro-scale jobs correspond to the limit of linear scaling. In the

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 22 of 24

time-to-completion approach, conversely, the resources allocated correspond to the point where the

speedup becomes null with an increase of resources. The speedup data of the micro-scale model is

extracted from the database and fitted to Amdahl’s law, as a function of the resource size. In both cases,

the fitted curve is used to determine the desired allocation. A remaining issue, specific to the HMC, is

that such optimisation is performed at every iteration of the macroscale model, hence at runtime. The

database, which is located on SuperMUC, is fetched from anywhere in the EEE to predict the

performance of the micro-scale jobs. Then, the micro-scale jobs are placed in the list in decreasing order

of allocated resources. Making using of the ‘tetris-like’ approach of the PilotJob to fill its available

resources, the total allocation is optimally employed. The routine finally dumps the micro-scale jobs

list, containing execution order and allocated resources, which in turn is pared by the QCG PilotJob

system for execution. Figure 10 shows the utilisation of the resources for the material application using

our optimisation strategy for five macro-scale iterations (separated with dashed lines).

The top part of Figure 10 shows the utilisation of the resources, all the resources are

continuously used until no more jobs are to be submitted, and then utilisation decreases just before the

end of the iteration. The main observation is that the utilisations are consistent at every iteration, which

shows that the optimisation method works quite well systematically. In the first iteration, for example,

the resources are not entirely used only 15% of the time (i.e after 300 seconds).

Figure 10: Utilisation of the system (top panel). The corresponding number of micro-scale jobs (middle panel) and number

of processors per micro-scale job (lower panel).

At the beginning, the bigger micro-scale jobs are submitted (on average 250 cores per micro-scale jobs),

which lasts for 100 seconds (see the bottom part of Figure 10). Then, the size of the submitted micro-

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 23 of 24

jobs almost continuously decreases, with an always increasing number of micro-jobs being executed

simultaneously (see the middle part of Figure 10).

It is interesting to note that some large micro-scale jobs can not be submitted at some point due

to lack of resources and are only executed in between 100 and 180 seconds (see the bottom part of Figure

10 for the first iteration for example). Instead of waiting for the availability of these resources to submit

them, and leaving some resources idle, the PJM fills these resources with smaller micro-scale jobs, thus

the entirety of the resources remain used.

3 Conclusions
We have described in some detail the activity in WP2 in M24 - M36 of the ComPat project, showing

the last developments on the three parts (Description, Optimisation and Execution) of the Multiscale

Computing Patterns and Algorithms software. The developments were mainly on

• Developing performance database measurements,

• Optimising execution plan selections to predict the performance of the multiscale application

based on measurements of the single scale components,

• Automating the benchmark process, to run on all EEE HPC resources, to populate the database

and make the performance data available when requested.

• Use the profiled energy consumption as a criterion in the MCP and Algorithms software

We showed the mechanism of running HMM applications using MCP and Algorithms software. We

proposed that the execution of the micro-scale models in the HMM application should be viewed as

three distinct phases. Then showed the utilisation resulted from applying different number of cores for

different phase. We also illustrated the on-fly optimisation on another example (HMM case), where

there it is running only on one phase.

4 References
[1] S. Alowayyed, D. Groen, P. V. Coveney, and A. G. Hoekstra, “Multiscale computing in the exascale

era,” Journal of Computational Science, vol. 22, pp. 15–25, 2017.

[2] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro, D. Groen, O. Hoenen, a.

Mizeranschi, J. L. Suter, D. Coster, P. V. Coveney, W. Dubitzky, A. G. Hoekstra, P. Strand, and B.

Chopard, “Performance of distributed multiscale simulations,” Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, vol. 372, p. 20130407, 2014.

[3] A. Abdulle, E. Weinan, B. Engquist, and E. Vanden-Eijnden, “The heterogeneous multiscale

method,” Acta Numerica, vol. 21, pp. 1–87, 2012.

ComPat - 671564

[D2.3 Final Report on Multiscale Computing Patterns and their Performance] Page 24 of 24

[4] W. E, B. Engquist, and Z. Huang, “Heterogeneous multiscale method: A general methodology for

multiscale modeling,” Phys. Rev. B, vol. 67, no. 9, p. 92101, 2003.

[5] A. Nikishova, L. Veen, P. Zun, and A. Hoekstra, “Uncertainty Quantification of a multiscale model

for In-Stent Restenosis,” Cardiovascular Engineering and Technology, 2018.

[6] L.-T. Cheng and E. Weinan, “The Heterogeneous Multi-Scale Method for Interface Dynamics,”

Contemporary mathematics., vol. 330, pp. 43–54, 2003.

[7] J. Knap, C. E. Spear, O. Borodin, and K. W. Leiter, “Advancing a distributed multi-scale computing

framework for large-scale high-throughput discovery in materials science,” Nanotechnology, vol. 26,

no. 43, p. 434004, 2015.

[8] E. Lorenz and A. Hoekstra, “Heterogeneous multiscale simulations of suspension flow,” Multiscale

Model. Simul. Multiscale Modeling and Simulation, vol. 9, no. 4, pp. 1301–1326, 2011.

[9] C. Wang, Q. Duan, W. Gong, A. Ye, Z. Di, and C. Miao, “An evaluation of adaptive surrogate

modeling based optimization with two benchmark problems,” ENSO Environmental Modelling and

Software, vol. 60, pp. 167–179, 2014.

[10] K. W. Leiter, B. C. Barnes, R. Becker, and J. Knap, “Accelerated scale-bridging through adaptive

surrogate model evaluation,” Journal of Computational Science Journal of Computational Science, vol.

27, pp. 91–106, 2018.

[11] M. Turilli, M. Santcroos, and S. Jha, “A comprehensive perspective on pilot-job systems,” ACM

Comput. Surv., vol. 51, pp. 43:1–43:32, Apr. 2018.

[12] L. Axner, J. Bernsdorf, T. Zeiser, P. Lammers, J. Linxweiler, and A. G. Hoekstra, “Performance

evaluation of a parallel sparse lattice Boltzmann solver,” Journal of Computational Physics, vol. 227,

pp. 4895–4911, May 2008.

[13] G. Zavodszky, B. van Rooij, V. Azizi, S. Alowayyed, and A. Hoekstra, “Hemocell: a high-

performance microscopic cellular library,” Procedia Computer Science, vol. 108, pp. 159–165, 2017.

[14] G. Závodszky, B. van Rooij, V. Azizi, and A. G. Hoekstra, “Cellular Level In-silico Modeling of

Blood Rheology with An Improved Material Model for Red Blood Cells,” Frontiers in physiology, vol.

8, 2017.

[15] A. J. Wagner and I. Pagonabarraga, “Lees–edwards boundary conditions for lattice boltzmann,”

Journal of Statistical Physics, vol. 107, pp. 521–537, Apr 2002.

[16] www.wiki.man.poznan.pl/hpc/index.php/Eagle.

[17] O. O. Luk, O. Hoenen, O. Perks, K. Brabazon, T. Piontek, P. Kopta, B. Bosak, A. Bottino, B. D.

Scott and D. P. Coster, “Application of the Extreme Scaling Computing Pattern on Multiscale Fusion

Plasma Modelling,” Philosophical Transactions of the Royal Society A. -- submitted.

[18] S. Alowayyed, et. al, “Patterns for High Performance Multiscale Computing,” Future Generation

Computer Systems. Accepted, 2018.

