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1   Executive summary 
After a short review of the Multiscale Computing Patterns and related software, this deliverable reports 

the main developments and the workflow of the Multiscale Computing Patterns and Algorithms 

software. The Multiscale Computing Patterns Algorithms and software has been extended with new 

capabilities, most notably the performance database with is filled using tools from WP4 and is used by 

the Pattern-Driven planner to propose candidate deployment and execution plans, based on 

measurements of the single scale components, to the QCG pattern aware planner. Second, automating 

the benchmark process, to run on all EEE HPC resources, to populate the database and make the 

performance data available when requested. An example of using the Multiscale Computing Patterns 

and Algorithms software is illustrated, showing that a wide range of variables for Multi-objective 

Optimisation algorithms can be chosen.  

The third and final pattern, the Heterogeneous Multiscale Computing pattern, has been 

implemented, and first benchmarks that demonstrate how to deal with the inherently dynamic nature at 

runtime of applications that utilise this pattern have been performed. This mainly involves an adaptive 

and dynamic load-balancing scheme that orchestrates micro-scale simulation. Two examples of different 

HMM application are illustrated. 

2   Report  

2.1   Introduction 

The goal of Work Package 2 is, quoting from Part A of the Description of the Action (DoA), to “create 

a general mapping from a multiscale model to a multiscale computing pattern. Reusable software 

components will be created for each of the three computing patterns. MML specifications of multiscale 

models will be modified to include these components, and the modified MML will be converted to input 

for the high-level tools (WP4) and middleware (WP5). The performance of the patterns will be tested 

and predicted.” 

This deliverable D2.3 will, quoting again from the DoA, “report on the performance of all 

selected multiscale applications as measured on the Experimental Execution Environment and selected 

production environments. It will give a detailed account of various metrics of resource usage, including 

wall clock time, data throughput, scalability and energy consumption. It will also provide a detailed 

account on the performance prediction models.” Most of the application specific measurements will be 

reported in deliverable D3.3 and performance profiling is part of deliverable D4.3. Here we will describe 

new results, building upon deliverables D2.1 and D2.2, that are generic to the Multiscale Computing 

Patterns. It is mainly based on work performed in task 2.3 (Development of the multiscale computing 
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patterns, which was extended with 6 months to M30) but also on 2.4 (profiling and performance 

measurement) and task 2.5 (Performance prediction modelling). 

In deliverable D2.1 we wrote that “converting MML for ComPat, task 2.2, has partly been 

addressed” and “we will therefore continue to put effort in this task, slightly deviating from the original 

DoA and extending this task into the second year of the project”, followed by deliverable D2.2 where 

we wrote that “we have now reached a point, given the current design of the Multiscale Computing 

Patterns (MCPs), that the information needed by them should not be embedded in MML, but provided 

as separate  component. This specifically relates to performance data of the single scale models, as 

described in section 2.3.1 and illustrated in section 2.4. We have, however, decided to not close task 2.2 

yet, as further development of the MCPs may warrant updates to MML.” We have now reached a final 

conclusion that updates of MML are not needed for the MCPs, closing task 2.2. 

The further development of the actual patterns, task 2.3, has been the major focus of WP2 during 

M18 to M36 of the project. In collaboration with WP3, WP4, and WP5 and building upon the conceptual 

design of MCPs as reported in deliverable D2.1 and the Multiscale Computing Patterns and Algorithms 

software that was described in detail in deliverable D2.2, as demonstrated for specific applications in 

deliverable D3.2, we have now finalised the design for the specific architecture for the Multiscale 

Computing Patterns and Algorithms software, in line with the overall ComPat architecture described in 

deliverable D5.1. We have implemented all its main features, and worked out examples to illustrate 

some of these concepts.  

The main developments, for the period of M24 - M36, were on the performance measurements 

database and how to integrate this component with the Optimisation component of the MCP and 

Algorithms software to predict the performance of the multiscale application based on measurements of 

the single scale components. Another major addition was to automate the benchmark process to populate 

the database and make the performance data available when requested. In addition to time-to-completion 

metrics, energy consumption was profiled and used as a criterion in the MCP and Algorithms software. 

Finally, the HMC pattern has been realised, implemented, and first tests have been performed. 

This deliverable will first quickly review the MCPs (as described in detail in deliverable D2.1) 

and the design of the Multiscale Computing Patterns and Algorithms software (as described in detail in 

deliverable D2.2), and then continue to describe and illustrate further developments and 

implementations of the Multiscale Computing Patterns and Algorithms software, including realisation 

of the third MCP, the Heterogeneous Multiscale Computing.  

2.2   Multiscale Computing Patterns and related Algorithms and Software 

As a courtesy to the reader, and to keep this deliverable self-contained, In this section we provide a short 

summary of Multiscale Computing Patterns, as described in detail in deliverable D2.1 and the Multiscale 
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Computing Patterns and Algorithms software, as described in detail in deliverable D2.2. We do refer 

the reader to deliverables D2.1 and D2.2 and [1,18] for all details, including worked out examples. 

We define Multiscale Computing Patterns (MCP) as “high-level call sequences that exploit the 

functional decomposition of multiscale models in terms of single scale models” [1]. We have identified 

three computing patterns that we believe are most relevant for high performance multiscale computing, 

namely: Extreme Scaling (ES), Replica Computing (RC) and Heterogeneous Multiscale Computing 

(HMC). 

The Extreme Scaling computing pattern represents a specific class of multi-scale applications 

where one (or perhaps a few) of the single scale models in the overall multiscale model dominates all 

others, in terms of computational and/or energy cost, by far. Such a dominating primary model is 

expected to scale to very large systems (i.e., multi-petascale or above) and the efficiency of the primary 

model largely determines the efficiency of the multiscale application. Consequently, one of our goals is 

to ensure minimal interference by the other single scale models, so-called auxiliary models. These 

typically have a much lower computational and/or energy cost, and could even be sequential codes [1]. 

Replica Computing is a multiscale computing pattern that combines a potentially very large 

number of terascale and petascale simulations (also known as 'replicas') to produce scientifically 

important and statistically robust outcomes. The replicas are not part of a larger spatial structure (as is 

the case in Heterogeneous Multiscale Computing), but they are applied to explore a system under a 

broad range of conditions. Replica Computing is set up through an initialisation stage, which determines 

the simulations required to explore or incorporate a given parameter space. This initialisation is then 

followed by one or more sequences of simulation and data processing [1].  

Heterogeneous Multiscale Computing pattern will be presented and discussed in depth in 

section 2.4.2. 

The key idea is that we define generic task graphs for each pattern, such that application specific 

task graphs can be embedded in the generic task graphs. We use the generic task graph to obtain an 

optimised mapping of the application to an HPC resource, and try to find generic algorithms for this. An 

MCP therefore is a tuple of a generic task graph plus data or models on the performance of single scale 

models, a specification of a specific multiscale application in terms of the xMML and a set of algorithms 

and heuristics that combine this into detailed input/configuration files for the execution environment 

[1].     

We have designed, implemented, and tested a first version of the Multiscale Computing Patterns 

and Algorithm software [18]. This software consists of Description, Optimisation and Execution 

components.  

The Description component translates the task graph, representing a multiscale simulation, to a 

particular type of multiscale computing pattern.  Second, the Optimisation component selects and 
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applies dedicated algorithms to find the most suitable mapping between submodels and available HPC 

resources.  Third, the Execution component involves a middleware layer that maps submodels to the 

number and type of physical resources based on the suggestions proposed by the Optimisation part 

together with infrastructure-specific metrics such as (expected) queueing time and resource availability.  

The main purpose of the Multiscale Computing Patterns and Algorithm software is to leverage 

the multiscale computing patterns to simplify and automate the execution of complex multiscale 

simulations on high performance computers, and to provide both application-specific and pattern-

specific performance optimisation [18].  

2.3   The Multiscale Computing Patterns and Algorithms software  

The development of the Multiscale Computing Pattern and Algorithms software is shown in Fig. 1. This 

figure is similar to the one shown in D2.2 and [18] with more technical details. 

 

 
Figure 1: ComPat stack developement status and plans 

Figure  shows the main components that comprise the MCP and Algorithms software (i.e., Description, 

Optimisation and Execution). In the next subsections, we will report the developments and the workflow 

of the MCP and Algorithms software on two mode; the normal “run” and the “benchmark” mode. 
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2.3.1   Design and Implementation 

The next subsections show the new and integrated components of the MCP and Algorithm software on 

the three different parts; the Description, Optimisation and Execution.  

 

Description part 

The translation service from the Description part has been redesigned and now takes user input to allow 

a seamless integration with the Fabsim tool. In terms of the embedded algorithms, the only modification 

is the addition of a module to parse the application task graph (obtained from xMML) and determine 

from it a formula to estimate the overall time of the application depending on the time spent in each 

submodel involved. This formula is stored within the inputs of the Pattern-Driven Planner (as 

modeltime) and will later be used by the Optimisation part to predict the makespan for a given 

configuration. An example of this is shown in section 2.4 . 

 

Optimisation part 

We have implemented the performance database to store, retrieve, query and interpolate performance 

data of the single scale components take make up a multiscale simulation in a faster and semi-automated 

form. The database is deployed in the LRZ SuperMUC facility and is accessible from the QCG head 

node. This database contains information of multiscale runs, different kernels with their main 

parameters, the detailed kernel performance / energy matrices and systems involved node types. The 

kernel performance includes all the information needed to do full performance measurements and 

predictions such as the overall run time, muscle time with communication between kernels, mpi time 

represent the communication within a kernel, IO time and energy profiling data (for more in-depth 

information we refer to deliverables D4.3 and D6.3).  

The node types are detected automatically from the middleware. Currently, this is done by 

requesting the available nodes number of cores per node and number of nodes.  

To populate the database, the MCP and Algorithms software has an option to run in 

“benchmark mode”. In this mode, the problem size is smaller or the duration is shorter than the original 

run.  The link between the benchmark problem and the production run problem have to be dynamically 

interpreted in the database as a set of parameters. The scale factor, between different parameters, is an 

input to the Pattern-Driven Planner part of the MCP and Algorithms software. Figure 2 illustrates the 

benchmark run mode.  
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Figure 2: Multiscale Computing Pattern and Algorithms software workflow in benchmark mode. 

First, the Pattern-Driven Planner takes the description of the single-scale and multi-scale as input. Next, 

the Pattern-Driven Planner generates different execution plans -in QCG scripts box- to ensure running 

the benchmark problem in all node types and hosts where each single-scale model is available, and on 

each possible set of core count determined from information provided by each single-scale model. This 

information can be the minimum and maximum number of cores, and possibly an expression to calculate 

all valid numbers within this range. The information on the amount of memory required per core is not 

implemented in the system, however, the user can decide to make a submodel non-available on a given 

node type if this node type has less than the minimum required memory to run the code.  

After all valid execution plans have been set up, each execution plan is modified to call the 

MAP profiling tool (see deliverable D4.1 and D4.2) for each single-scale model, and an additional stage-

out phase is added to collect all the performance profiles. These additions can be done automatically or 

necessitate the user to set up specific inputs for the MCP and Algorithms software, depending on the 

use-case. Staged-out performance profiles are then automatically uploaded to the database, from which 

they can be further queried in order to predict the performances of further runs that can be compared or 

extrapolated from these benchmarks (see Figure). This is the way to do automated benchmarking of 

multiscale applications on the MCP and Algorithms software to seamlessly schedule and deploy a 

multiscale simulation in the most efficient way to a supercomputing environment, meeting the 

constraints of both the user and the owners of the supercomputing facility. 

 

 
Figure 3: Multiscale Computing Patterns and Algorithms software workflow in run mode. 
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Figure shows the workflow of the normal run. In this mode, the Pattern-Driven Planner generates, 

using the same mechanism as in benchmark, a number of execution plans. The different is that for each 

execution plan we had queried the database to predict the performances (time, energy, etc), which are 

compared or extrapolated from the benchmarks runs we launched. Each execution plan is filled with 

time, energy and efficiency numbers. Then, they are ordered based on the criteria chosen time-to-

completion, energy consumption, and efficient usage of resources (see section 2.4 for example) in one 

QCG script. QCG will then calculate the queue time using the Queue Time Prediction Service (see D6.3) 

and re-order these plans based on the new information (for further details we refer to D5.3 section 2.3). 

If the profile option is on “–P option”, then a MAP profiler will be used like what we did for the 

benchmark and the database is updated automatically.  

We originally planned to include a simulation of the resources on which the multiscale models 

would be executed. Such component would allow estimating the performance of the single-scale models 

on some architecture, and with that information, the behaviour of a multiscale application could be 

estimated. This is certainly an interesting option to have to explore the behaviour of MCPs and 

multiscale applications expressed in terms of MCPs on non-existing architectures. Our MCP and 

Algorithms software is completely ready for this option. Unfortunately, we have not been able to deliver 

this option. Having the choice on spending our resources on hardening and finalising key components 

in our software stack, or adding an additional new component, we opted for the first. In this way, we 

have a fully functional software stack that can be used for existing Tier0 machines. Unfortunately, we 

cannot predict (yet) the behaviour on future machines. This we consider future work. 

 

Execution part 

The new QCG schema expose a set of new capabilities provided on a middleware layer and tailored to 

enable multi-criteria brokering as well as to improve the support for energy-efficient execution of High 

Performance Multiscale Computing application on computing resources. The newly implemented 

pattern-aware brokering plugin for QCG-Broker allows selecting execution resources based among 

others on time to completion, energy-usage and CPU-Hours-usage metrics. In order to support the first 

metric, i.e. time-to-completion, the new brokering plugin has been integrated with an additional new 

component implemented based on the cooperation between WP5 and WP6, the Queue Time Prediction 

Service, which provides statistical estimations for queueing time. For more information, please refer to 

the deliverables D5.3 and D6.3. 

A new component was implemented to support HMC pattern, the pilot job. It is a normal job 

submitted to supercomputers to reserve resources and use the resources as a unified unit. The QCG Pilot 

Job Manager system has a similar mechanism by allowing the management of the resources on the 

application level. The pilot job is akin to a traditional job array, but it allows the scheduling and 
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execution of small and dynamic jobs with different resource requirements. For more details, we refer to 

D5.3. 

2.4   Using the Multiscale Computing Patterns and Algorithms software 

In this section, we will first report the usage of the MCP and Algorithms software and then we will 

discuss the third and last pattern, the Heterogeneous Multiscale Computing pattern, in more details. 

 

2.4.1   Example -- Fusion 

As reported in deliverables D2.2 and D3.2, the global turbulence (fusion) application fits into the 

Extreme Scaling computing pattern, for one of the single scale submodels (turbulence model) is scalable 

and requires the majority of the computing resources when compared to the rest of the submodels 

(equilibrium, flux-to-transport-coefficient module, and transport models). The workflow topology is 

illustrated in Figure 4. The turbulence (TUR) is simulated by the GEM code, equilibrium (EQU) by 

CHEASE, transport (TRA) by ETS, and module (FDV) by IMP4DV. Each one of these submodels are 

wrapped around by a MUSCLE2 kernel. For details of fusion software we refer to deliverable D3.1. 

 

 
Figure 4: The topology of the fusion application. 

This topology is an input to the coupling tools used (MUSCLE2) in form of connection schema 

represented in xMML. The MCP and Algorithms have the ability to automatically detect the topology 

and “propose” a multi-scale performance model as discussed in section 2.3.1. This model can be 

reviewed by the user and changed accordingly. In Figure 4, the multi-scale performance model is the 

sum of all components as one “motif”. Other workflow topology (not presented in this deliverable) is 

assembled and tested.  In  that workflow, the GEM and CHEASE can be initiated at the same time and 

the multiscale performance model is the sum of the ETS, IMP4DV, and the maximum time between 

GEM and CHEASE.  

 The MCP and Algorithms software provides the ability to generate and possibly submit 

a set of benchmark cases to all HPC resources available in the EEE. These resources include LRZ 

SuperMUC’s Thin, Fat, and Haswell node types; PSNC Eagle’s Haswell-64, Haswell-128, and Haswell-
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256 node types; STFC Neale’s IvyBridge node type. A set of benchmarks contains five cases, where 

each case uses a different number of cores required by the kernels. 

 Each time we submit a set of benchmarks, the MAP integrates into the MUSCLE2 

environment to monitor the performance of kernels and obtains performance profiles as shown in section 

2.3.1. The performance numbers include runtime, time spent in MUSCLE2 operation, time spent in 

MPI, and energy consumption of the kernel. These profiles are then recorded into a database, and in the 

future the data can be extracted to produce estimated performance metrics for the multiscale application. 

There are three performance metrics that are taken into account: time to completion T, efficiency ε and 

total energy Etot. While time to completion is straightforward, the efficiency and total energy 

consumption are not. The efficiency is defined as 

ε  =  (NP TP+ NaTa) / (N T),  

 

with NP, Na, and N as the number of cores for primary, auxiliary, and multiscale models, respectively; 

and, TP and Ta as the time spent in the primary and auxiliary models, respectively. The total energy 

consumed by the multiscale application is the sum of energy consumed by all MUSCLE2 kernels. This 

can contribute towards the next generation exascale computers, especially when energy consumption is 

heavily discussed as a measure of resource usage. 

 For the rest of this subsection, we present several examples.  We request from the MCP 

and Algorithms software the best execution plans based on multiple criteria: time-to-completion, 

efficiency and energy usage. In this run, we ask for all the set of available executing configuration for 

the multiscale application running on minimum of 128 and maximum of 4099 cores. In addition, this 

instance of Fusion consists of two “kernels” ETS and GEM. We configure GEM to run on 128 – 2048 

cores, while ETS runs on one core. We set the MCP and Algorithms software, in the following runs, to 

show the best three plans (-M 3 option). 

 

Time-to-completion 

In this example, we run the default behaviour of the MCP and Algorithms software. Here we request the 

minimum time-to-completion of fusion multiscale application on all the node types available on EEE. 

This small run, a benchmark run, consists of 4 multiscale iterations (motifs). The Pattern-Driven Planner 

will generate the following plans: 
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Table 1: Execution plans generated from the Pattern-Driven-planner for a small run with 4 motifs. These plans are ordered 

by the time-to-completion. 

Plan name Plan time 
(seconds) 

Cores / sub-model Energy 
(Joules) 

Node type Efficiency 

Plan0 1960.56 (1,2048) 4155313.31 Haswell_64 0.91 
Plan1 1972.79 (1,2048) 4720715.21 Haswell_128 0.92 
Plan2 1997.92 (1,1024) 2605986.11 Haswell_64 0.93 

 

We notice that each one of the plans listed in Table 1 are local to a node type. This is true in ES, unless 

there is a restriction such as running one code on one machine and other codes on another machine. The 

long communication time between different nodes, which is represented in the database under MUSCLE 

time, is the main reason to avoid the options of different node types. In addition, all plans are listed in 

the ascending order of time-to-completion. In the plan time, we added a safety limit time to the real run 

time. The safety limit time, which is set to a default value of 1800 seconds, is used to avoid the hard 

wall-clock limit that might occur due to the external factors (e.g., wake-up node times). The first plan, 

for example, has a real run time of 160.56 seconds to run 4 motifs. 

 Next, we show a “production” run, with a large number of iterations. In this run, we 

increase the number of iterations (motifs) from 4 to 300. By using the same setting as before, the Pattern-

Driven Planner generates plans listed in Table 2: 

 
Table 2: Execution plans generated from the Pattern-Driven-planner for a large run with 300 motifs. These plans are 

ordered by the time-to-completion. 

Plan name Plan time 
(seconds) 

Cores / sub-model Energy 
(Joules) 

Node type Efficiency 

Plan0 13882.18 (1,2048) 312687325.6 Haswell_64 0.91 
Plan1 14802.42 (1,2048) 355233820.1 Haswell_128 0.92 
Plan2 16693.63 (1,1024) 196100453.9 Haswell_64 0.93 

 

We notice that the generated plans are scaled with the change of this global parameter (number of 

motifs). In the database, the performance values are normalised with this value. The current problem is 

~ 75 times larger than the previous example. The real run time of the first plan, after taking out the safety 

limit time, is 12080 seconds (3.3 hours), which is ~75 times longer. This scaling exercise can be done 

for the local parameter of the single-scale models as well. The same mechanism applies to the energy 

consumption.  

 

Efficiency 

In this example, we demonstrate the efficiency criterion (-E option) in the same way as the previous 

example. However, we only choose from the nodes available in SuperMUC. This is done using “-H 
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HOSTNAME”. By choosing the efficiency, the execution plans are chosen based on the shortest time 

first, then, we order the first n plans based on efficiency.  

 
Table 3: Execution plans generated from the Pattern-Driven-planner for a small run with 4 motifs.  These plans are ordered 

by the efficiency. 

Plan name Plan time Cores / sub-model Energy Node type Efficiency 
Plan0 70403.3 (1, 128) 226717053.7 Thin 0.96 
Plan1 44501.06 (1, 256) 256033981.7 Thin 0.94 
Plan2 31549.94 (1, 512) 338506140.6 Thin 0.92 

 

The resulting execution plans are, as expected, request less core counts compared to the previous 

examples. The efficiency can be seen as the effect of the auxiliary single-scale models on the multi-scale 

execution time.  

 After defining, discussing, and providing proofs of concept for two computing patterns 

(namely Extreme Scaling and Replica Computing) in deliverables D2.2 and D3.2, we will now report 

on the third and most dynamic computing pattern, heterogeneous multiscale computing (HMC) [1]. 

Moreover, the results of two HMM applications using the Optimisation part are presented.  

2.4.2   Heterogeneous Multiscale Computing 

The HMC pattern implements a family of multiscale models which, using the MMSF terminology, are 

single domain with multiple and dynamic instantiations of the micro-scale dynamics, utilising a 

call/release coupling template [2]. The heterogeneous multiscale method [3,4] represents the most 

obvious multiscale model that fits the HMC patterns, but other examples would include running 

uncertainty quantification on extreme scaling applications using so-called semi-intrusive algorithms [5]. 

The later will be further explored and developed in the recently started FET-HPC project VECMA. 

 In this set of multiscale applications, a complex phenomenon is modelled by employing 

a numerical solver for the macro-scale equations and obtaining missing properties (e.g., constitutive 

equations) from suitable micro-scale simulations. Hence, the macro-scale model(s) are coupled, usually 

for each iteration, with a large and dynamic number of micro-scale models (Figure 5 ). 
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Figure 5: The computational structure of hierarchical multiscale applications. 

The HMC pattern is based on, and inspired by, the hierarchical multiscale method (HMM) [4]. The 

primary potential and advantage of HMM is capturing of the dynamics at the macro-scale level by 

considering some microscopic details of the problem. Thus, HMM is a modelling technique used to 

numerically solve multiscale problems by coupling multiple submodels together, each of which solves 

a component separately. An overall macro-scale model then emerges when the separate submodels are 

combined. Micro-scale models are employed to resolve each unknown component of the problem 

separately and return the result to the macro-scale model. In this case, heterogeneous suggests that the 

problem is multi-physical in nature [6]. Frameworks taking into account the computational aspects of 

HMM, certainly in relation to HPC, are rare [1,7]. For this reason, we propose heterogeneous multiscale 

computing. 

 From a computational point of view, the potentially large number and dynamic nature of 

the number of required micro-scale models, which are determined at runtime, can become a bottleneck 

in production runs [1]. The number of micro-scale models also depends on the spatial properties of the 

macro-scale model [8]. Moreover, micro-scale models can be computationally intensive. Figure 6 shows 

the execution time of the micro-scale model as a function of the number of processors. In the micro-

scale, we simulated the red blood cells and platelets suspensions in plasma using HemoCell [14]. In this 

specific benchmark, it is clear that the minimal execution time is obtained using 16 processors. 

Increasing the number of processors to more than 16 actually increases the execution time. This is a 

well-known phenomenon in strong scaling of parallel applications, and is due to increasing overhead 

time as the number of processors increases. Thus, in this example, the boundary limits for the number 

of processors for the micro-scale models are Pmin= 1 and Pmax = 16. 
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Figure 6: Average performance of the cell-suspension LBM solver, representing micro-scale models. 

To reduce the large number of micro-scale models, a surrogate model should be utilised in between the 

micro- and macro-scales. The surrogate model contains a database that is used to store data to avoid 

duplicating calculations and to build a surrogate model (e.g., based on a Gaussian processes) to conduct 

interpolations for similar parameters. This process decreases the required number of micro-scale models 

requested, which in turn decreases computation time. Generally, this solution is practical and has been 

used in multiple fields [9,10]. In this example, we replaced this process with performance figures, which 

mimic the operation. 

 

Surrogate model performance analysis 

The number of micro-scale models changes with every macro-scale model iteration and is highly 

dependent on the state of the surrogate model. For this, we need to analyse the performance of the 

surrogate model per time step (g(t)) as follows: 

𝑔(𝑡) = 	
   𝜂((𝑡)	
  /	
  𝐷𝑜𝐹, 

 

where DoF is the total number of degrees of freedom of the macro-scale model and 𝜂((𝑡) is the number 

of successful calls to the database per marco-scale time step, which replaces the need to generate micro-

scale jobs. 

 The performance of the surrogate model will vary the number of micro-scale models 

needed for each macro-scale iteration significantly, which can lead to load imbalance and low utilisation 

of the available resources. Thus, the main target of the runtime optimisation part of MCP and Algorithms 

software is to schedule this dynamically varying load of micro-scale models in an optimal way on the 

available resources. 

 The value of g can vary for cases where the user is building the surrogate from scratch 

(𝑔 → 0), where the surrogate model is replacing the micro-scale models efficiently (𝑔 → 1) or for in-

between scenarios. To deal with the distribution of the number of processors in all these cases, we define 
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three different phases in HMC and the corresponding processor distribution mechanism is shown in 

Algorithm 1. 

 
Algorithm 1: HMC phases 

1:      procedure HMC(g(t), DoF, Pmin , Pmax , Pµ ) 

2: η(t) = DoF (1 − g(t)) 

3: if η(t)Pmin > Pµ then                                  . Phase 1 

4:       run(η(t), Pmin ) 

5: else if η(t)Pmin < Pµ  < η(t) Pmax then       . Phase 2 

6:       run(η(t), Pµ / η(t) ) 

7: else                                                             . Phase 3 

8:       run(η(t), Pmax ) 

9: end if   

10:     end procedure 

 

The important elements in Algorithm 1 are the number of processors reserved for all micro-scale models 

Pµ, and η(t), the number of micro-scale models in time step t. If Pµ < Pmin η(t), then the most appropriate 

action to take is to do farming by running each micro-scale model with a minimal number of processors 

Pmin. On the other hand, if Pµ < Pmax η(t), then running with Pmax is the most suitable choice. Otherwise, 

for Pmin η(t) < Pµ < Pmax  η(t), all micro-scale models must be run on 0𝑃2 𝜂(𝑡)⁄ 4,  limiting it to not more 

than Pmax, which is the maximum number of processes that the model can benefit from before the 

performance decreases. Also, if the performance values of running the micro-scale models using 

different parameters are available or can be estimated, as shown in HMM_materials, the number of 

processors per micro-scale model can be changed accordingly in the second phase. We will apply this 

concept to a case for the surrogate model starting from scratch. 

 Figure 7 shows the performance of a surrogate model (top), expressed by g(t) and the 

corresponding number of micro-scale jobs (bottom) of the surrogate model under investigation. In this 

example DoF = 48818, Pmin = 1 and Pmax = 16. The colours show the three phases, as introduced above. 

Phase one, where the farming of jobs is done using Pmin processors per micro-scale model, is represented 

in green. Phase two is shown in blue and the third and final phase is shown in red. The dashed lines in 

the figures are the micro-scale model iterations. Figure 7 shows a surrogate model with good 

performance. This performance figure is based on results from a simulation in which this "surrogate 

model" was actually implemented [10] with modification at the first few macro-scale iterations to mimic 

the case of a new surrogate model. 
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Figure 7: Performance of a surrogate model generated from scratch. Top graph shows the performance values of the 

surrogate model and lower graph shows the corresponding numbers of micro-scale jobs. The colours refer to the phases, 
where green is the first phase. 

As shown in Figure 7, the first phase of the new surrogate model requires more jobs at the beginning to 

build the surrogate model. This phase also takes more macro-scale iterations to complete. Note that the 

number of micro-scale jobs per iteration is calculated as 	
  𝜂(𝑡) = 𝐷𝑜𝐹(1 − 𝑔(𝑡)). However, in the first 

phase we do not run the total number of 48818 jobs, but we run batches from which we can then train 

the surrogate model. In the second phase, the number of micro-scale jobs is less than the number of 

micro-scale jobs in the first phase. Knowing that it is not beneficial to run a micro-scale job utilising 

more than Pmax processors, and the time to run a micro-scale job varies with the number of processors 

and the input parameters, we might end up having a number of idle processors. We can use these free 

processors in the second and third phases to further explore the parameter space of the micro-scale model 

for better performance of the surrogate model, or even change the number of processors per micro-scale 

model based on different input parameters for each micro-scale model. In the third phase, it is preferable 

to release unused processors back to the system, to save on the budget. Generally, switching between 

phases will be totally dynamic and the runtime part of the MCP and Algorithms software should handle 

this process, as will be illustrated in the next sections. We also note that it might even happen that during 

the runtime of the HMM we switch back and forth between the different phases, completely depending 

on how we traverse the parameter space of the microscale jobs. However, the hope is that, by using 

advanced surrogate modelling techniques and proactively computing in unexplored parts of parameter 

space, we can keep training the surrogate model to perform very well. This however remains to be 

investigated, and was not part of the work done in ComPat. 

 Our proposed solution is to use the resources dynamically supported by the architecture, 

with the assistance of tailored scheduling controlled by the pattern. For the architecture, we will use the 

pilot job mechanism. 

 We executed our experiments on Eagle [16], a supercomputer at the Poznan 

Supercomputing and Networking Center (PSNC) in Poznan, Poland. The QCG pilot job used in this 
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work was a normal job submitted to Eagle to reserve a set of resources. After reservation, these resources 

were then managed using a python script, the Pilot job manager. In this script the user can launch, request 

and kill jobs dynamically. In our benchmarks, the Pilot job reserves a number of processors first. Then, 

in the Pilot job manager, we submit the macro-scale model and the HMC manager. The macro-scale, 

after an iteration, requests a number of parameters to the surrogate model. The surrogate model looks in 

the database, interpolates the missing quantity and requests to run a number of micro-scale models for 

the missing quantities. The number of micro-scale models and the available resources are then sent to 

the HMC manager to suggest the right distribution of the resources to the Pilot job manager. In addition, 

it acts to different phases of the HMM application accordingly. The pilot job manager then executes the 

submodels utilising an internal queue on the required resources, gathers the values from the micro-scale 

jobs and sends them back to the surrogate model. For more information on the QCG pilot job, we refer 

to D5.3. 
 

Preliminary results – RBC application 

We measured the runtime and utilisation for the performance shown in Figure 7. Resource utilisation U 

is defined as U = R / C, where R is the actual used number of processors and C is the capacity, which is 

the total number of processors available for the job. The utilisation was measured as a function of wall 

clock time during the execution. 

 In this experiment, the number of processors allocated for the macro-scale model was PM 

= 8, for the surrogate model PD = 1 and for the HMC manager PH = 1. The total number of processors 

available for the micro-scale models was Pµ = 206. The degree of freedom selected, for simplicity, was 

DoF = 48818. 

 Figure 8 (top panel) presents the utilisation of the system, using our strategy, for the 

surrogate model presented in Figure 7. 
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Figure 8: Utilisation of the system (top panel) by using the surrogate model, as shown in Fig 4. The corresponding number of 

micro-scale jobs (middle panel) and number of processors per micro-scale job (lower panel) were decided by the HMC 
manager. 

 

In Figure 8 (top panel), in the first macro-scale iteration, a large number of micro-scale jobs are executed, 

each executing with Pmin = 1 in a first-in, first-out queue (in our method, we use sub-queues in the pilot 

job rather than in batches). The utilisation in this phase is high because we simply exploit all available 

resources. At the beginning, the utilisation is one, which means that all 206 processors are used as shown 

in Figure 8 (middle panel). After a while, ~ 18-32 jobs are completed, shown as the first few small 

decreases of the green line. 

 The blue line in Figure 8 (top panel), for the second to fifth macro-scale iterations, shows 

Pmin η(t) < Pµ < Pmax η(t) phase. The utilisation at the beginning of these iterations is one, because all the 

processors reserved for micro-scale models are used by running the micro-scale models with η(t), ⌈Pµ / 

η(t)	
  ⌉. For example, in the second macro-scale iteration (which lasted from 800 to 1100 minutes of the 

runtime), 142 jobs were run with ~ 2-1 processors, each shown in Figure 8 the middle and lower panels, 

respectively. As a result of different micro-scale model execution times with different numbers of 

processors per micro-scale model invocation, we notice a gradual decrease in the utilisation. In this 

situation, an internal mechanism could be implemented to use the available processors to refine the 

surrogate model by proactively (so not informed by the macro-scale model) executing micro-scale 

models in yet unexplored regions of the micro-scale input parameter space. The gradual decrease in the 

second macro-scale iteration does not occur in the next iterations (macro-scale iterations 3 to 5), because 

the number of micro-scale model jobs in iteration 4, for example, is smaller (54 running with ~ 4 

processors shown in blue in Fig. 8  (middle and lower panels)). 
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 The last macro-scale iteration in Figure 8 (top panel) falls in the third phase, where the 

number of micro-scale jobs is only 12, and the number of processors per micro-scale job run is Pmax = 

16. As is shown clearly by the red line in the graph and also the red lines in Figure 8 (middle panel), we 

run all the micro-scale models in one fast run. This phase is fast, but the utilisation remains low. In this 

state, as discussed, we could release the unused processors, as the surrogate is mature enough to replace 

the need to generate new micro-scale jobs. 

 

Preliminary results -- HMM-Material application 

In this application, the Optimisation part investigate the main issue related to the execution of the HMM-

Material. In this application, the number of micro-scale models is static, because of the lack of surrogate 

model. However, the variable execution time of the single micro-scale jobs would case a load imbalance. 

The left panel of Figure 9 shows the strong scaling of one strains tensor setup and the right panel is the 

execution time of the micro-scale models with different strains tensors normalisation. For more 

information on the HMM-Material application, we refer to D3.1. 

 

 
Figure 9: The execution time of micro-scale md simulations using the same configuration on different number of cores (left 
panel), and on the same number of cores with different stain tensor configurations (right panel). 

The micro-scale jobs are executed in the order they figure in the input file until the global resource 

allocation given to the PilotJob is filled, the following jobs are set in a single queue. In the Optimisation 

part, we developed an optimisation routine for the execution of the list of micro-scale jobs with the QCG 

PilotJob system: time-to-completion and efficiency are the two potential optimised criteria. The 

optimisation is performed controlling the combination of resources allocated to each micro-scale job 

and the order it appears in the micro-scale jobs list.  

Resources allocation for individual micro-scale jobs are determined differently depending on 

the optimised criteria. Although in both situations, the allocated resource is determined using 

performance data of the micro-scale scale model, and more specifically the speedup. In the efficiency 

approach, the resources provided to the micro-scale jobs correspond to the limit of linear scaling. In the 
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time-to-completion approach, conversely, the resources allocated correspond to the point where the 

speedup becomes null with an increase of resources. The speedup data of the micro-scale model is 

extracted from the database and fitted to Amdahl’s law, as a function of the resource size. In both cases, 

the fitted curve is used to determine the desired allocation. A remaining issue, specific to the HMC, is 

that such optimisation is performed at every iteration of the macroscale model, hence at runtime. The 

database, which is located on SuperMUC, is fetched from anywhere in the EEE to predict the 

performance of the micro-scale jobs. Then, the micro-scale jobs are placed in the list in decreasing order 

of allocated resources. Making using of the ‘tetris-like’ approach of the PilotJob to fill its available 

resources, the total allocation is optimally employed. The routine finally dumps the micro-scale jobs 

list, containing execution order and allocated resources, which in turn is pared by the QCG PilotJob 

system for execution. Figure 10 shows the utilisation of the resources for the material application using 

our optimisation strategy for five macro-scale iterations (separated with dashed lines).  

The top part of Figure 10 shows the utilisation of the resources, all the resources are 

continuously used until no more jobs are to be submitted, and then utilisation decreases just before the 

end of the iteration. The main observation is that the utilisations are consistent at every iteration, which 

shows that the optimisation method works quite well systematically.  In the first iteration, for example, 

the resources are not entirely used only 15% of the time (i.e after 300 seconds). 

 

 

 

 
Figure 10: Utilisation of the system (top panel). The corresponding number of micro-scale jobs (middle panel) and number 

of processors per micro-scale job (lower panel). 

At the beginning, the bigger micro-scale jobs are submitted (on average 250 cores per micro-scale jobs), 

which lasts for 100 seconds (see the bottom part of Figure 10). Then, the size of the submitted micro-
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jobs almost continuously decreases, with an always increasing number of micro-jobs being executed 

simultaneously (see the middle part of Figure 10). 

It is interesting to note that some large micro-scale jobs can not be submitted at some point due 

to lack of resources and are only executed in between 100 and 180 seconds (see the bottom part of Figure 

10 for the first iteration for example). Instead of waiting for the availability of these resources to submit 

them, and leaving some resources idle, the PJM fills these resources with smaller micro-scale jobs, thus 

the entirety of the resources remain used. 

3   Conclusions 
We have described in some detail the activity in WP2 in M24 - M36 of the ComPat project, showing 

the last developments on the three parts (Description, Optimisation and Execution) of the Multiscale 

Computing Patterns and Algorithms software. The developments were mainly on  

•   Developing performance database measurements, 

•   Optimising execution plan selections to predict the performance of the multiscale application 

based on measurements of the single scale components, 

•   Automating the benchmark process, to run on all EEE HPC resources, to populate the database 

and make the performance data available when requested.  

•   Use the profiled energy consumption as a criterion in the MCP and Algorithms software 

We showed the mechanism of running HMM applications using MCP and Algorithms software. We 

proposed that the execution of the micro-scale models in the HMM application should be viewed as 

three distinct phases. Then showed the utilisation resulted from applying different number of cores for 

different phase. We also illustrated the on-fly optimisation on another example (HMM case), where 

there it is running only on one phase. 
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