
 ComPat - 671564

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 671564.

D5.2 First report on ComPat

middleware services

Due Date 18

Delivery 18

Lead Partner PSNC

Dissemination Level PU

Status Final

Approved Internal review - YES

Version 1.0

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 2 of 34

DOCUMENT INFO

Date and version number Author Comments

27.02.2017 v0.1 Bartosz Bosak Table of contents

27.03.2017 v0.2 Bartosz Bosak Merged input received from

contributors

27.03.2017 v0.3 Bartosz Bosak Minor corrections

28.03.2017 v0.4 Vytautas Jancauskas Comments and Editing

31.03.2017 v0.5 Neil Morgan Comments and Editing

04.04.2017 v0.6 Tomasz Piontek Final editing

CONTRIBUTORS

The contributors to this deliverable are:

Contributor Role

Tomasz Piontek Technical Leader, WP5 Leader and author of this

deliverable

Bartosz Bosak WP5 contributor

Piotr Kopta WP5 contributor

Maciej Tronowski WP5 contributor

Saad Alowayyed WP3 contributor

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 3 of 34

TABLE OF CONTENTS

1 Executive summary .. 5

2 Status of the ComPat Middleware .. 6

2.1 Extensions in middleware to enable unified execution of applications on the EEE 7

2.1.1 Grid Security Infrastructure, Distributed Resource Management Application AP (GSI

DRMAA) .. 7

2.1.2 Integration of QCG middleware with ComPat Monitoring and Downtime Services 9

2.1.3 Integration with the Allinea tools .. 10

2.1.4 Other improvements in the middleware tools and services for multiscale applications 12

2.2 Energy optimization – the ECOS service .. 16

2.2.1 Review of the available power-saving solutions in a modern HPC hardware............... 16

2.2.2 Initial tests of hardware and software capabilities ... 16

2.2.3 Automatic workload characterization .. 19

2.2.4 ECOS service .. 19

2.2.5 Results ... 19

2.3 Support for High Performance Multiscale Computing Patterns .. 20

2.3.1 General idea of optimization for patterns .. 21

2.3.2 New capabilities in QCG services for Patterns ... 22

3 Summary of main achievements and plans for phase 2 (M18-M36) of the project...................... 26

4 Conclusions .. 27

5 Annexes .. 28

5.1 Workflow description expressed in the QCG XML dialect ... 28

5.2 QCG job description for Replica Computing pattern (BAC application) 29

5.3 QCG job description for Extreme Scalling pattern (FUSION application) 31

6 References .. 33

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 4 of 34

LIST OF FIGURES

Figure 1. ComPat system architecture .. 6

Figure 2. Network tunelling proposed for the SuperMUC restrictions .. 11

Figure 3. Results of the tests with different hw/sw settings ... 17

Figure 4. Total memory bandwidth usage for a different number of threads ... 18

Figure 5. Comparison of energy usage with and without ECOS for different problem sizes 20

Figure 6. The Pattern based Development and Execution Environment ... 21

Figure 7. The new scheduler in QCG-Broker for execution of pattern-based tasks. Reservation scheduler

and Execution scheduler existed before ComPat. ... 23

Figure 8. patternTopologyType – the new element that allows to describe ... 24

Figure 9. Scheduling algorithm used by Pattern Execution Scheduler .. 26

LIST OF LISTINGS

Listing 1. qcg-connect command usage ... 10

Listing 2. The QCG job’s description with job arrays ... 12

Listing 3. The output of qcg-info command for job array ... 13

Listing 4. Description of a workflow job in the QCG-Simple format ... 14

Listing 5. qcg-resources command usage .. 15

Listing 6. Example report returned by the qcg-resources command ... 16

LIST OF ABREVIATIONS

DRMAA Distributed Resource Management Application API

ECOS Energy Consumption Optimization Service

EEE Experimental Execution Environment [Project Testbed]

ES Extreme Scaling [Pattern]

HMC Heterogeneous Multiscale Computing [Pattern]

HPMC High Performance Multiscale Computing

NUMA Non-Uniform Memory Access

PRACE Partnership for Advanced Computing in Europe

RC Replica Computing [Pattern]

QCG Quality in Cloud and Grid [middleware]

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 5 of 34

1 Executive summary

This report is a deliverable summarizing the role as well as the current development and deployment

status of the ComPat middleware services at month 18 of the project. It describes how the new

capabilities of the middleware layer have been designed and implemented to fulfil the needs of the

Multiscale Computing Patterns defined by Work Package 2. We further define how these patterns are

used by multiscale applications to target the exascale resources being developed in Work Package 3.

We present the most significant achievements so far and discuss solutions to the problems we

encountered.

The results of the work described in this report are in conformance with the architecture of the ComPat

system described in the deliverable D5.1 – Architecture of the ComPat system. One of the major

achievements of the project is the first version of the ComPat system developed, deployed and running

on EEE resources. To this end we developed and released new middleware services and updated

existing ones. Additionaly this work supported the delivery of the M10 milestone and the release of

Middleware Services.

Middleware services have been extended to allow ComPat users access to all of the Experimental

Execution Environment (EEE) resources. This document describes all the work that was needed to

provide versions of services that could be deployed on PSNC, LRZ and STFC resources and details

unexpected, but substantial problems encountered at LRZ and STFC sites.

Energy consumption issues become especially important when dealing with computations in the

exascale. Current hardware architectures when scaled up to deliver exacsale levels of compute require

an uneconomic and impractical level of energy consumption. In order to deliver a viable solution it is

necessary to optimise efficiency at all levels of the hardware and software stack. In order to provide

the necessary capabilities to effectively execute High Performance Multiscale Computing (HPMC)

pattern-based applications a through analysis was performed. Software was developed to optimise

energy use when dealing with memory-bound multiscale applications. Implementation details are

discussed later in the document explaining how this has allowed us to achieve a 30% improvement in

energy efficiency.

As part of this work package a significant amount of effort has been committed to implement

ComPat’s HPMC patterns. To this end we have added new functionality to the QCG-Broker service,

which includes the creation of a new pattern aware brokering algorithm. This is in addition to other

tasks that were necessary to correctly implement resource allocation plans proposed by WP2.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 6 of 34

2 Status of the ComPat Middleware

The main aim of Work Package 5 is the provisioning of middleware services that are capable of

efficient execution of multiscale applications on top of the high-end e-Infrastructure, consisting of

single or multiple resources of the Tier0/1 class. As presented in Figure 1 and described in detail in

D5.1 – Architecture of the ComPat system [1] the ComPat project has selected the QCG system to be a

primary middleware element.

Figure 1. ComPat system architecture

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 7 of 34

In order to offer the requested functionality and bring the anticipated levels of abstraction over

heterogeneous resources, the QCG middleware had to be functionally integrated with the Experimental

Execution Environment (EEE, the ComPat testbed) core services, as well as cooperate with the

ComPat High Performance Multiscale Computing (HPMC) patterns tools and services. WP5 is also

responsible for the development of intelligent mechanisms that minimise energy-usage of pattern-

based applications. This is necessary to efficiently run highly resource demanding multiscale

simulations. The next subsections present current achievements of the project in all these areas.

2.1 Extensions in middleware to enable unified execution of applications

on the EEE

The primary requirement of all ComPat participants, but especially the application groups, was to have

instant access to the project testing environment - (EEE). It was decided to offer minimally adapted

services as early as possible to provide an environment for testing. In order to enable access,

cooperation between WP5 and WP6 was settled in the first months of the project. The deployment of

QCG middleware was quickly accomplished on the PSNC’s resources Eagle and Inula, where the new

release 4.0 of the all QCG services and tools (the initial version for the created ComPat branch) was

deployed. However, checking compatibility of the existing implementations with policies and

restrictions at LRZ and STFC/Hartree Centre identified several unexpected problems. Before the basic

version of middleware could be deployed on those sites, substantial work was required to resolve the

aforementioned barriers.

Further extensions of the middleware services and tools were introduced to make the use of the

middleware services themselves and the EEE resources more straightforward. In the rest of this section

we describe all major middleware development and adaptation tasks associated with the provisioning

and implmentation of the EEE.

2.1.1 Grid Security Infrastructure, Distributed Resource Management

Application AP (GSI DRMAA)

A significant initial problem related to the deployment of middleware services was encountered on the

SuperMUC machine at LRZ. It emerged that administrative restrictions present at LRZ’s site resulted

in the necessity to implement a new version of the DRMAA (Distributed Resource Management

Application API) library. The new library used by the QCG-Computing service relies on

LoadLeveler commands executed over the gsi-ssh protocol instead of the typically used queuing

system API. This also had an influence on the QCG-Computing service itself, which had to be adapted

to an essentially different way of interacting with queuing systems.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 8 of 34

Development of the new version of the DRMAA library and its integration with QCG-Computing

required significant effort which was not anticipated at the planning stage. The list below summarizes

the steps that were needed to create the new GSI DRMAA library and integrate it with the QCG stack:

 Preparation of a skeleton for GSISSH/GSIFTP-based DRMAA library.

 Extension of the DRMAA module interface and implementation of a new mechanism to copy

files using the gridFTP protocol.

 New mechanism on the DRMAA library level allowing remote commands using the GSISSH

protocol.

 New mechanism to establish and store the status of the job submission based on the parsed

output of the “llsubmit” command.

 New mechanism to monitor and store the status of the execution of a job based on the parsed

output of the “llq” command.

 Modification and extensions to the DRMAA module configuration scheme.

 New mechanism for storing in a persistent way information about the final status of job

execution together with the exit code.

 New mechanism to discover the user’s home directory on the remote system.

 New mechanism to create/remove working directory for the job on a remote system.

 New mechanism to pass from QCG-Computing to the DRMAA library a user proxy and to

delegate it to the remote resource.

 Extension of the QCG-Computing configuration mechanism to deal with remote resource

access.

 Modification of the QCG-Computing NAGIOS test subsystem to work with GSISSH-

DRMAA and LRZ restrictions.

 Implementation of a mechanism for remote execution of the “llstatus” command together with

parsing output and storing the results.

 Implementation of a mechanism for remote execution of the “llclass” command together with

parsing output and storing the results.

 Implementation of a new facility for retrieving information about modules available on the

systems resources.

 Compilation from sources of all the dependencies missing in SLES repositories as well as of

QCG-Computing and QCG-Notification services.

 Adaptation of the QCG service management scripts.

 Final integration tests on the production infrastructure in LRZ.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 9 of 34

2.1.2 Integration of QCG middleware with ComPat Monitoring and Downtime

Services

A supplementary capability expected by ComPat users and technology providers was the capability to

monitor the status of the infrastructure. For the sake of this requirement, during the first half of the

project, the QCG middleware services were integrated with the ComPat Monitoring service developed

by WP6. The integration was done by providing a set of dedicated, QCG specific, probes for the

NAGIOS system. During the lifetime of the project the business logic and implementation of the

initial versions of NAGIOS probes have been altered to allow the testing of new versions of the

services, as well as to provide more accurate information about their statuses. The probe for the QCG-

Computing service has been redesigned and reimplemented to allow job submission to the

LoadLeveler queueing system on the SuperMUC cluster in LRZ. It was necessary to adjust the

existing data transfer mechanisms to the newly developed DRMAA implementation. Additionally, the

logic of the QCG-Broker probe has been modified to avoid false positive service failure detection, in

cases where a job submitted to QCG hasn't finished in the assumed period of time, due to prolonged

queue times.

Building of the unified ComPat execution environment required some additional implementation

effort on both EEE and QCG sides. The computational resources forming the EEE belong to various

European and local research infrastructures and they are managed within the scope of various

initiatives and their operational procedures:

 SuperMUC (LRZ) - Partnership for Advanced Computing in Europe (PRACE)

 Eagle, Inula (PSNC) - European Grid Infrastructure (EGI)

 Neale (STFC) - Hartree Center,

The consequence of this heterogeneity is the fact that the EEE resources did not have a single

information system storing and publishing information on current and planned downtimes. The

knowledge about downtimes in a complex, distributed environment is required for proper allocation of

tasks to resources. In the scope of WP6 a new service that integrates data about current and planned

downtimes for all of the resources available for the project has been created and made available in the

ComPat ecosystem. To achieve the logical integration of resources into a single research

infrastructure, the functionality of the QCG-Broker service has been extended to take into

consideration information about system downtimes and exclude from the list of available resources

these with planned downtime that would make them unavailable for use. The integration was done by

developing a new plugin for the ResourceDiscovery module of QCG-Broker that filters out resources

with impending downtime that would impact on planned execution.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 10 of 34

2.1.3 Integration with the Allinea tools

Interactive debugging and profiling of multiscale applications is enabled in ComPat by the Allinea

tools being adapted by the project in WP4. In order to ensure usability of the Allinea tools the QCG

middleware was configured to support interactive tasks on resources. The interactive task

functionality was selected as a way of integration of the Allinea tools with the ComPat ecosystem.

QCG tools and services allow a job to run in either interactive mode or to connect to an already

running job through an interactive session. Both these approaches enable a system user to start and

control the process of remote debugging and profiling by sending text commands from the QCG-

Client side to the Allinea tools and daemons executed together with the application on the EEE. To

allow seamless integration of the Allinea tools with the QCG infrastructure, the qcg-connect tool has

been modified to eliminate from the output of the command any diagnostic and user intended

information that could break the internal Allinea protocol used to control the remote process. The so

called “quiet mode” has been implemented and added to the qcg-connect tool. The implementation of

the “quiet mode” required changes and modifications in the structure of modules on the QCG-Client to

allow interpretation of parameters passed to the command prior to any other action to prevent any

QCG specific information being sent to the output stream of the command. The syntax of the qcg-

command is shown in Listing 1.

[plgpiontek@qcg ~]$ qcg-connect --help
Connect to the task. Open the interactive terminal in the working directory of the
task

usage: qcg-connect [-h] [-Q] [-V] JOBID[/TASKID]
usage: qcg-client connect_to_task [-h] [-Q] [-V] JOBID[/TASKID]

Options:
-h,--help display help message
-Q,--quiet quiet mode
-V,--version display version

Arguments:
JOBID identifier of the job
TASKID optional identifier of the task
 The default identifier of task is 'task'

Listing 1. qcg-connect command usage

2.1.3.1 Network tunelling

In LRZ and STFC the network configuration disallows direct connections from the computing nodes

to the machines outside the cluster’s private networks. The LRZ network policy is especially

restrictive - the incoming connections to the login node are accepted only for ssh/gsissh services and,

what’s more, any outgoing connections from the login node are prohibited. In order to provide an

interactive task capability on these sites, which was a requirement for the integration of the Allinea

tools with the EEE, a special, dedicated solution had to be designed. It was decided to use the well-

known, reliable and secure SSH tunneling service as a base solution. However, a single SSH tunnel

can be created only to the particular site and port, which limits its usage to a single service. In cases

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 11 of 34

when many connections to the various services are needed, more tunnels have to be created.

Fortunately, the SSH service has SOCKS (versions 4 & 5) server implementation built-in which can

be used with remote tunnels. The tunneled SOCKS server in combination with the jump hosts

mechanism, which allows the creation of connections via one or more intermediate hosts, creates a

very universal and flexible solution that has been used as a proof of concept for the QCG remote

console capability in a network restricted environment.

Figure 2 presents the proposed solution for the LRZ site, where there is an additional jump host due to

the network policy restrictions on the login node.

Figure 2. Network tunelling proposed for the SuperMUC restrictions

In the first step (1), the tunnel from the qcg-compat machine to the login node is created to allow SSH

connections from the computing nodes to the qcg-compat site. This tunnel should be permanent as it

will be shared by all QCG jobs. The second step, sets up a remote SOCKS server at qcg-compat site

through a tunnel (2), and is unique for each QCG job and lasts as long as a job is executed. The tunnel

is created to the qcg-compat site with one jump host, which is the login node. At this stage, on the

computing node a listening SOCKS v5 socket is opened which forwards connections to the world with

the SOCKS protocol. This protocol is not transparent to the applications - they need to use a special

SOCKS connection. Fortunately, transparency can be achieved by use of a specialized wrapper tool,

which catches all calls to socket functions and replaces them with SOCKS aware invocations. The

legacy applications do not need to be modified. In the presented solution, the tsocks [3] wrapper tool is

used (3). The described solution allows the QCG console server, executed with the aforementioned

wrapper on a worker node of the cluster, to use the created SOCKS server and connect to the QCG

console client application run on the user side (4).

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 12 of 34

The developed proof of concept solution confirmed that the network restrictions can be successfully

overcome by tunneling and hopping over several machines. Although this mechanism is quite

sophisticated, it offers good flexibility, security and performance. The final implementation was

postponed until the positive acceptance of the proposed solution by the resource providers.

2.1.4 Other improvements in the middleware tools and services for multiscale

applications

A large amount of work within WP5 has been devoted to the development of various improvements to

the QCG stack. These improvements - although general purpose on their own - were motivated by the

concrete needs of the ComPat applications and patterns. Among other, less obvious, capabilities, the

QCG middleware has been extended with the several major features presented below.

2.1.4.1 Job Array Support

The capabilities of QCG services and tools have been unified and extended to support job array

functionality on the EEE resources. This functionality allows a set of independent tasks to be run on

the EEE inside a single job. Thus it can be easily used for example to search a parameter space for a

specific problem. In context of the ComPat project, Job array support is used to address the needs of

the Replica Computing pattern, in which the main concept is to run a set of independent tasks

(replicas). QCG allows submission and control of multiple such tasks as a single QCG task. Most

importantly - all the sub-tasks are scheduled independently and can be executed on various clusters to

balance the overall load on the EEE, to increase the overall throughput of the system and decrease the

total time to completion for the replica pattern. The QCG Simple Description format was extended to

support two ways of defining the job array specification either by providing a range or a list of values.

The example of the QCG job with two alternative definitions of the job array is presented in Listing 2.

#!/bin/bash
#QCG host=agave
#QCG walltime=PT10M
#QCG output=${JOB_ID}.output
#QCG error=${JOB_ID}.error
#QCG stage-out-dir=.-
>${JOB_ID}

#QCG array=1-10:2
#QCG array=1,3,5,7,9
sleep $(($DRMAA_ARRAY_TASK_ID*60))

 Listing 2. The QCG job’s description with job arrays

Additionally, the QCG-Client was extended to report the status of the submitted job array. For the job

array task the qcg-info command provides general information about the total number of elements in

the array and a list of statuses with a number of sub-tasks in them. Listing 3 presents the output of an

example invocation of the qcg-info command.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 13 of 34

qcg-info J1489153370445__9669"

J1489153370445__9669 :
Note:
UserDN: /C=PL/O=PL-Grid/O=Uzytkownik/O=PL-Grid/CN=Tomasz Piontek/CN=plgpiontek
TaskType: SINGLE
SubmissionTime: Fri Mar 10 14:42:50 CET 2017
FinishTime:
ProxyLifetime: P24DT6H11M39S
Status: RUNNING
StatusDesc:
StartTime: Fri Mar 10 14:42:51 CET 2017
Purged: false

Allocation:
HostName: agave
ProcessesCount: 1
ProcessesGroupId:
Status: RUNNING
StatusDescription:
SubmissionTime: Fri Mar 10 14:42:51 CET 2017
FinishTime:
LocalSubmissionTime: Fri Mar 10 14:42:53 CET 2017
LocalStartTime: Fri Mar 10 14:42:54 CET 2017
LocalFinishTime:
Purged: false
JobArrayStatus: TOTAL=5 EXECUTING=2 FINISHED=3
WorkingDirectory:
gsiftp://agave16.man.poznan.pl/~/J1489153370445__9669_task_1489153371056_333

Listing 3. The output of qcg-info command for job array

In the example presented above, the total number of elements in the job array is 5. Two subtasks are

being executed and three have already finished.

2.1.4.2 Extensions to the Workflow execution

To address the specific needs of the ComPat project and to allow efficient execution of the patterns

(mainly the Replica Computing Pattern) the workflow execution capabilities of the QCG-Broker

service have been adapted and extended. The efficient execution of the real example of the Replica

Computing Pattern - Binding Affinity Calculator (BAC) application required the following general

improvements on the QCG-Broker side:

 The “extension” mechanism has been introduced to allow the running of dependent tasks in

the working directory of the parent task to avoid necessity to transfer data between tasks. The

dependencies between tasks are expressed in the QCG Job description:

<taskid=”amber” extension=”namd”>

The above definition specifies that the “amber” task should be started in the working directory

of the previously executed “namd” task.

 Also for the BAC scenario the general extension mechanism was extended to support

parameter sweep tasks to enable data transfer optimization for a set of tasks.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 14 of 34

In such a case, in the name of the parent task of some task in a workflow, a parameter sweep

variable may be provided. This variable is then substituted by the proper value during the

execution of the workflow:

<task taskId="amber" extension="namd_PSit${PS_it}">

To ensure the proper order of the execution of tasks, the QCG-Broker service has been

additionally extended to allow the expression of the workflow dependencies between

parameter sweep tasks using variables:

<parent triggerState="FINISHED">namd_PSit${PS_it}</parent>

2.1.4.3 Workflow support in the QCG simple description format

To allow end-users to run simple workflows without the necessity to use the non-user friendly QCG

Job Profile XML description format, the Simple Description dialect has been extended to support

basic workflows. A set of new #QCG directives has been added to allow users to specify workflow

dependencies using the QCG Simple format:

 #QCG global - optional section that allows a user to specify QCG directives as a part of the

script that will be used for all tasks in the workflow. The global section can occur multiple

times in the description.

 #QCG task - this directive opens definition of the given task. The task definition ends with

the end of the file, another task directive or global directive. The directive specifies the name

of the task.

 #QCG depends - this directive allows a user to specify that the task depends on another one.

 #QCG extends - this directive allows a user to specify that for the transfer optimisation

purpose the task should be executed in the working directory of another task.

The example of workflow description in the simple QCG format is presented in Listing 4.

#QCG global
#QCG walltime=PT10M
#QCG output=output.${JOB_ID}.${TASK_ID}
#QCG error=error.${JOB_ID}.${TASK_ID}
#QCG persistent
#QCG host=agave

#QCG task=task1
echo task1
sleep 15
hostname

#QCG task=task2
#QCG depends=task1
#QCG extends=task1
echo task2
sleep 15
hostname

Listing 4. Description of a workflow job in the QCG-Simple format

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 15 of 34

The above description is equivalent to the XML description attached in Anex 5.1. One can notice that

the Simple format is much more intuitive, shorter, more understandable and generally more user-

friendly.

2.1.4.4 Quasi-dynamic information about the status of the EEE

Besides the integration with the Monitoring and Downtime services, QCG stack was extended to allow

end-users to obtain quasi-dynamic information about the status of the resources forming the EEE.

QCG services collect and update information about the status of the infrastructure every 5 minutes.

The information presented to end-users allows, based on the current availability of resources, to plan

the execution of experiments (select the resource and amount of requested resources) without the use

of Pattern Performance Service. The QCG client allows information about the EEE to be requested at

various levels of granularity and detail. The syntax of the qcg-resources command is presented in

Listing 5.

qcg-resources --help
Privides information about controlled resources
usage: qcg-client resources [-a <show_hidden>] [-h] [-m] [-n <PROPERTIES>] [-q] [-R
<RESOURCES>] [-s] [-u] [-V] [-v]
Options:
-a,--applications <show_hidden> print information about applications
-h,--help display help message
-m,--modules print information about modules
-n,--nodes <PROPERTIES> print information about nodes
-q,--queues print information about queues
-R,--resources <RESOURCES> List of comma separated names of resources
-s,--summary print summary information about the resource
-u,--users print information about users
-V,--version display version
-v,--vos print information about vos

Listing 5. qcg-resources command usage

Listing 6. shows two outputs of the invocation of the qcg-resources command. The former invocation

displays a summary about the status of the EEE, the later details information about the nodes of the

Eagle cluster.

[plgkopta@qcg ~]$ qcg-resources

httpg://compat-broker.man.poznan.pl:8443/qcg/services/

/C=PL/O=GRID/O=PSNC/CN=qcg-broker/qcg-broker.man.poznan.pl

UserDN = /C=PL/O=GRID/O=PSNC/CN=Piotr Kopta

ProxyLifetime = 28 Days 22 Hours 30 Minutes 59 Seconds

SUMMARY:

HOST NODES UP OFF DOWN APPS MODULES USERS JOBS WAIT RUN QUEUES RES VOS

supermuc 9493 9489[100.0%] 1[0.0%] 3[0.0%] 2 621 0 667 179 482 10 0 0

hartree 118 116[98.3%] 0 2[1.7%] 5 54 5 0 0 0 5 0 0

eagle 1005 941[93.6%] 4[0.4%] 60[6.0%] 16 230 1239 4616 26 4588 15 0 0

[plgpiontek@qcg ~]$ qcg-resources --nodes --resources eagle

---- CLUSTER: eagle ----

Category: [intel, haswell, haswell_2600mhz, fdr, huawei, 128GB]

 Nodes: 460 (down=49[10,7%] offline=26[5,7%] up=385[83,7%])

 Cores: 12880 (avail=10780[83,7%] free=7924[73,5%])

 Cores per node: 385x28cores

 Memory per node: 385x128617MB

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 16 of 34

Free cores per node: 94x0 1x3 1x18 2x4 1x20 1x5 1x25 2x24 80x27 2x26 1x13 199x28

Category: [intel, haswell, haswell_2600mhz, fdr, huawei, 256GB]

 Nodes: 52 (down=1[1,9%] up=51[98,1%])

 Cores: 1456 (avail=1428[98,1%] free=1178[82,5%])

 Cores per node: 51x28cores

 Memory per node: 51x257641MB

Free cores per node: 6x0 1x7 1x10 43x27

Category: [intel, haswell, haswell_2600mhz, fdr, huawei, 64GB]

 Nodes: 487 (down=24[4,9%] offline=32[6,6%] up=431[88,5%])

 Cores: 13636 (avail=12068[88,5%] free=11382[94,3%])

 Cores per node: 431x28cores

 Memory per node: 431x64105MB

Free cores per node: 22x0 70x27 339x28

Listing 6. Example report returned by the qcg-resources command

2.2 Energy optimization – the ECOS service

One of the challenges addressed in the ComPat project relates to the energy efficiency requirement of

exascale systems and need to monitor, predict and manage power consumption. In order to provide the

necessary capabilities in this context, complex analysis was performed which resulted in the decision

to develop a new Energy Consumption Optimization Service (ECOS). The first version of the

component focuses on optimization of energy use for memory-bound applications on the level of a

single scale kernel. The service utilizes information from performance counters and appropriately

modifies the frequency of processors. The conducted tests have shown that the service allows a saving

of up to 30% of energy. During the remainder of the project we will integrate this service with the

QCG stack and extend it further to support CPU-bound applications and complex multiscale scenarios.

2.2.1 Review of the available power-saving solutions in a modern HPC hardware

The main method for energy saving in the high performance computing (but also in personal

computers) is dynamic voltage and frequency scaling (DVFS). Many tools that use this method, have

been proposed over the years to save energy during computations while at the same time trying to

minimize impact on performance [4][5][6][7][8][9][10]. ECOS draws on experience gained while

analysing those existing tools. Additionally it offers better utilization of new energy related functions,

available in modern hardware [11][12][13][14][15].

2.2.2 Initial tests of hardware and software capabilities

For the initial testing phase three applications were chosen to imitate common workload types in HPC:

CPU-bound, memory-bound and communication-bound processing. For each workload type a simple

multi-threaded application was developed. CPU-bound processing was simulated by executing

multiple iterations of small matrix multiplication code (small enough to fit in the processor cache).

Memory-bound workloads were also simulated by matrix multiplication applictions, but in this case

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 17 of 34

the matrix was much larger, forcing data to be fetched from system memory into local cache.

Communication-bound processing was simulated by repeatedly sending a message from one process

to every other in MPI application.

The tests were performed to compare application performance and energy use with regards to different

processor settings (TurboBoost on/off, different performance bias levels), different operating system's

frequency scaling drivers (CPUfreq, intel_pstate) and policies (e.g. performance, powersave).

These tests demonstarted clearly a case where frequency scaling drivers weren't performing optimally.

In the case of memory-bound processing there was no difference in performance between running

application with highest and lowest CPU frequency, but there was considerable difference in energy

usage. This case was the motivation to propose a better policy for frequency scaling which allows

energy saving without compromising performance. The CPU clock speed, when running a memory-

bound program, does not affect performance because most of the time the processor stalls while

waiting for the data to get fetched from main memory.

Tests results for memory-bound benchmarks are presented on the plot shown in Figure 3. The columns

represent subsequent program runs with different parameters. Upper chart shows total power usage

during the program run, and the lower chart present program total execution time. We can observe,

Figure 3. Results of the tests with different hw/sw settings

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 18 of 34

that when the settings lower CPU frequency, program runtime doesn’t change, but there is

significantly lower energy usage.

CPU memory stalls affect modern multi-core processor performance only when there are many cores

referencing main memory simultaneously. This happens because memory bandwidth is limited and

many cores are able to saturate it, but one core is not able to do so, even when running with maximum

frequency.

The plot presented in Figure 4 shows total memory bandwidth in relation to the number of running

threads. Different data series correspond to program runs with different CPU frequencies. We can

observe that when application is run with a small number of threads, memory bandwidth rises almost

linearly until it saturates when application is run with 6 threads. After that point, memory bandwidth is

constant and doesn’t change with further increase of number of threads nor a change in clock speed.

Figure 4. Total memory bandwidth usage for a different number of threads

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 19 of 34

2.2.3 Automatic workload characterization

Because the tests show only a narrow, specialized case, where there was an opportunity to save

energy, there was a need to automatically detect when this case is occurring during the execution of a

broad range of different applications. Therefore subsequent tests were performed to find a suitable

metric for automatic workload type characterization. The most suitable metric turned out to be the

CPU stall cycles ratio. It is a ratio of the number of stall memory cycles to the total number of cycles.

2.2.4 ECOS service

ECOS was created as a system service, that runs in the background and is independent of any other

applications running in the system. ECOS controls clock speed separately for every hardware thread.

During ECOS operation three stages can be distinguished, which are executed sequentially in an

infinite loop:

1. Statistics gathering – in the first stage ECOS reads statistics from performance counters.

ECOS is using counters for two events: number of stall memory cycles and total number of

cycles. To read the counters ECOS is using the LIKWID library, which offers high level,

platform agnostic API to access performance counters.

2. Decision – based on the latest statistics ECOS tries to decide if system is performing memory-

bound computations. If it is, the CPU frequency could be limited which results in energy

savings. The decision rule is applied independently for every hardware thread, and it is based

on a value of the metric for an individual thread, but also an average value for a socket. An

average value for a socket is taken into account because different sockets belong to different

NUMA domains, and different NUMA domains have independent memory bandwidth

budgets.

3. Setting new frequency – the last stage of ECOS operation is executed only if there is a

decision to change current CPU frequency. ECOS could decide to lower clock speed, but

naturally there is also an complementary action when clock speed is increased. The new CPU

frequency is enforced using API of the CPUFreq module built-in into the Linux kernel. It

allows to set a range of operational frequency for each logic processor in the system. ECOS

modifies upper limit of this range, which effectively results in lowering the CPU frequency.

2.2.5 Results

The results for the ECOS test of memory-bound benchmark application are in line with original

assumptions and show approximately 28% energy savings with negligible impact on performance. For

the CPU-bound application there wasn't any substantial performance or energy consumption changes

compared to the reference execution.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 20 of 34

The plot in Figure 5 presents total energy usage for the synthetic benchmarks. Small problem sizes (8,

64, 512) represent CPU-bound processing, and bigger problem sizes (4096 and 32768) represent

memory-bound processing. The different data series on the plot represent program runs with different

numbers of threads, and there are two runs for each setting of a number of threads – one with and one

without ECOS running. We can observe that ECOS results in sizable energy savings in the case of the

memory-bound program runs with a large number of threads.

Unfortunately tests with the namd application haven’t shown any energy saving, but running ECOS

didn't result in any differences in performance. The Namd application is strictly CPU-bound and

ECOS isn't suitable for this workload type.

2.3 Support for High Performance Multiscale Computing Patterns

The three reusable HPMC patterns are fundamental for the ComPat project. Although the development

of the patterns is managed by Work Package 2, WP5 has a responsibility to offer all the necessary

functionality for the proposed patterns through the middleware. Through the joint efforts of WP2,

WP3 and WP5 a set of features in the pattern and middleware services has been defined and utilised to

Figure 5. Comparison of energy usage with and without ECOS for different problem sizes

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 21 of 34

inform and steer developments in respective work packages. In this document, we focus on the results

of particular developments made in WP5. In order to clearly present the role of middleware in ComPat

pattern handling, the provided discussion starts with an overview of the developed pattern scenario.

The detailed information about the pattern subsystem is available externally in the deliverable D2.2 –

First Report on Multiscale Computing Patterns and Algorithms [2]

2.3.1 General idea of optimization for patterns

The idea behind the patterns is to identify a set of general multiscale executions scenarios, which cover

the majority of multiscale applications execution cases. The identification of these common scenarios

will allow the proposal of a the methodology and development of a set of general and specialized tools

and services to enable end-users to create multi-scale applications and to execute them in an efficient

way on the distributed exascale infrastructure. The benefits from utilzing patterns are many-fold,

starting with the speedup of the process of creation of the application and ending with simplifying the

execution of multiscale scientific simulations on distributed exascale infrastructure. The patterns give

special attention to the efficiency of applications execution in terms of performance and energy

consumption as well as fault tolerance.

The High Performance Multiscale Computing (HPMC) is defined as a set of “high-level call

sequences that exploit (take advantage of) the functional decomposition of multiscale models in terms

of single scale models”. [16]

2.3.1.1 HPMC Pattern based Development and Execution Environment

Figure 6. The Pattern based Development and Execution Environment

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 22 of 34

The HPMC Pattern Based Development and Execution Environment is the core of the ComPat system

and the instantiation of the architecture of the system proposed in the deliverable D5.1 [1].

The Pattern based Development and Execution Environment, as shown in Figure 6, is composed of

three main parts, namely “description”, “tool” and “services”. The description part is a set of tools

responsible for building the formal description and the requirements of the multiscale application. The

second part is the tool part, which is the main part that uses the concept of the Performance Matrix and

applies the required algorithms according to the pattern type and the required measurement. Currently

the performance matrix consists of entries presenting the wall clock time needed to calculate a

submodel on a given amount of resources. At a later stage, this matrix will be re-used for energy as

well. To fulfil the requirement of the scientific applications, we can do scaling interpolation as a

combination of data and model. In this form we can add another dimension to the matrix to be a

performance matrix per submodel, per problem size. For more information, we refer to D2.2 [2]. The

output of the tool part is a QCG script, which includes a set of alternative allocation plans for the

complex multiscale application. Each plan maps submodels to a different number of resources.

Finally, the third part is the QCG middleware stack which is responsible for selection of the best

allocation plan for the multiscale application (mapping of computational kernels to the concrete

number of physical resources of a specific type) and then the efficient and reliable execution of the

application on the distributed heterogeneous infrastructure. The extension and adaptations to the QCG

middleware stack to support the proposed concept of the HPMC Patterns are, next to the general

extensions for multiscale applications, the main part of the WP5 work and the primary topic of this

document.

2.3.2 New capabilities in QCG services for Patterns

In general, assigning of tasks to resources is a multi-criteria problem dependent on highly dynamic

factors. At present, it is simply not possible unambiguously to select the best resources for a given use-

case. Different user requirements, different priorities, unpredictable resources loads, diverse energy-

usage constraints - these are only some of many problems faced by middleware developers. The

special nature of complex multiscale computations addressed in the ComPat project makes the

problem of scheduling and brokering even more difficult. Thus the crucial, but also the most time-

consuming implementation task to enable execution of ComPat applications on the EEE was the

creation of a new pattern-aware brokering module for QCG-Broker - the Pattern Execution Scheduler

– see Figure 7.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 23 of 34

Figure 7. The new scheduler in QCG-Broker for execution of pattern-based tasks. Reservation scheduler

and Execution scheduler existed before ComPat.

This new component was developed to efficiently handle a new type of task – pattern tasks with

resource allocation plans created by the HPMC Pattern service. Thanks to this implementation, the

brokering procedure is aware of the specific requirements of kernels constituting the multiscale,

pattern-based application and may select the best resources to optimize the requested criterion (e.g.

time to finish or total energy-usage). Since the new brokering module uses new input parameters to

specify the requirements of the HPMC patterns, it was necessary to modify the format of the job

description and also some internal schemas used to exchange information between components of

QCG-Broker service. The QCG JobDescription schema has been extended by the “patternTopology”

element that allows the description of the topology of the multiscale application. The whole structure

of the patternTopology element is presented in Figure 8.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 24 of 34

Figure 8. patternTopologyType – the new element that allows to describe

pattern-based applications in QCG

The meaning of the main elements of the patternTopology is as follows:

 <kernels> - the “kernels” element contains a list of all kernels (<kernel> element) constituting

the multiscale applications together with an optional list of auxiliary modules (mappers and

filters) (<helper> element) that have to be started together with the main kernel,

 <classes> - the “classes” element contains a list of classes of resources. The class of resources

is a set of types of nodes (<node> element) that are equal from the point of view of the

performance of the specific kernel,

 <plans> - the “plans” element contains a list of alternative allocation plans generated by the

Pattern Performance Service and corresponding to them a set of criteria that allows QCG-

Broker to select the optimal plan based on the given criteria and the current status and

availability of resources in the EEE. The only criterion taken into consideration at this stage of

the project is execution time, but in the future the energy consumption will be used as a

second criterion. The kernels can be arranged into groups to prevent the system placing them

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 25 of 34

on various disperate resources that could negatively impact on the overall performance of the

multiscale application. For every single kernel it is possible to specify a list of alternative

classes of resources with an amount of resources (cores or nodes) that should be allocated to

that kernel in case of selection of the given class (one of the node types belonging to that

class).

 <reservations> - a list of reservations on clusters that can be used to ensure the requested

SLA or to synchronize the execution of parts of multiscale application distributed acros many

resources.

Currently the broker provides basic functionality for Extreme Scaling and Replica Computing use-

cases taking into account only the time to finish criterion. The example job descriptions for these

patterns are attached in Anexes 5.2 and 5.3. It is planed to extend the functionality in future to support

Heterogeneous Multiscale Computing pattern and to address also the energy-efficiency of calculations.

2.3.2.1 Pattern-aware scheduling algorithm for QCG-Broker

To efficiently schedule the ComPat applications, the traditional scheduling algorithms are simply not

suitable. Therefore, next to two other previously existing brokering algorithms, in WP5 a new

experimental methodology has been proposed and used to implement a new Pattern Execution

Scheduler for QCG-Broker. The scheduling algorithm used in this new component takes into account

several aspects of modern multiscale computing. First of all, it is aware of the multi-kernel nature of

multiscale application and the fact that each kernel may behave differently in the context of

performance and energy-usage when executed on different resources. The notable advantage of the

new scheduler when comparing it to the existing earlier implementations relates to the functionality

for handling alternative plans of execution. The plans constructed by the HPMC Pattern Generator on

the basis of performance measurements are compared with respect to current load of computing

resources. Then the best plan is selected to run.

In Figure 9 the newly developed scheduling algorithm is outlined. This algorithm was successfully

embedded into QCG-Broker as Pattern Execution Scheduler and deployed on EEE resources.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 26 of 34

Figure 9. Scheduling algorithm used by Pattern Execution Scheduler

As it is described above, the Pattern Execution scheduler based on the plans provided by the Pattern

Performance Service creates a space of all combinations of feasible resource allocations for kernels of

the multiscale application. All the feasible allocations are evaluated taking into account the considered

criteria. At this stage of the project the only criterion taken into consideration is time to completion.

The algorithm searches for the allocation for which the total time to complete, defined as a sum of the

queue time and execution time is minimal. For the prediction of the queue time, development of a new

service is planned in the second part of the project. Currently the queue time is a random value

proportional to the amount of requested resources.

3 Summary of main achievements and plans for phase 2 (M18-

M36) of the project

The main achievements of WP5 at the M18 are as follows:

 design of the general architecture of the ComPat system (deliverable D5.1, milestone MS5);

 adaptation of QCG services to allow their deployment on EEE resources and creation of the

unified environment for the project;

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 27 of 34

 adaptation and modification of QGG services and tools to support two of the three types of

Pattern Scenarios: Replica Computing and Extreme Scaling;

 design and implementation of the first version of the Pattern-aware brokering algorithm for the

QCG-Broker service;

 development of a mechanism for decreasing energy consumption when executing memory-

bound applications;

 Release of ready-to-use middleware services and tools: currently, the most recent version of

the QCG software source packages can be obtained from svn repository

(https://apps.man.poznan.pl/svn/qcg-broker/tags/compat-milestone-1), for the majority of

QCG components RPMs packages for SL6 and SL7 systems are also available. (milestone

MS10);

 integration of QCG services with other ComPat specific tools and services to create an

integrated Pattern-based Development and Execution Environment (deliverable D5.2,

milestone MS10).

Plans for the second stage of the project:

 support for the Heterogeneous Multi-scale Computing Pattern;

 implementation of a service for queing time prediction;

 taking into account the aspect of energy efficiency in the brokering algorithm;

 fault tolerance issues associated with multiscale jobs within and exascale environment.

4 Conclusions

This deliverable describes all major achievements of WP5 reached until the end of M18.

The range of new functionality developed in the middleware layer and the successful integration with

both the EEE and Pattern layers described in this document demonstrates significant progress, in both

WP5 and the project more widely. This workpackage has managed to achieve its primary goals as

defined in the project’s DoW for this period. All the milestones for M18 has been fully accomplished

with the deployment of the Middleware stack on the EEE.

As we have not had or expect any significant delays, we anticipate to continue working on WP5 as

planned during the next period. Since deployment limitations have been mostly solved, we will focus

on developing new components and adding functionality to the ComPat middleware.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 28 of 34

5 Annexes

5.1 Workflow description expressed in the QCG XML dialect

<qcgJob appId="">
 <task persistent="true" taskId="task1">
 <candidateHosts>
 <hostName type="INCLUDE">agave</hostName>
 </candidateHosts>
 <execution type="single">
 <executable>
 <execFile>
 <file name="wf.qcg">
 <location type="URL">qcg://USE_SCRIPT_CONTENT/wf.qcg</location>
 </file>
 </execFile>
 </executable>
 <stdout>
 <file>
 <location
type="URL">gsiftp://qcg.man.poznan.pl:2811//home/plgrid/plgpiontek/reef/WF/output.${JOB_ID}.${TASK_ID}</location>
 </file>
 </stdout>
 <stderr>
 <file>
 <location
type="URL">gsiftp://qcg.man.poznan.pl:2811//home/plgrid/plgpiontek/reef/WF/error.${JOB_ID}.${TASK_ID}</location>
 </file>
 </stderr>
 <stageInOut>
 <directory creationFlag="OVERWRITE" name="${JOB_ID}.${TASK_ID}" type="out">
 <location
type="URL">gsiftp://qcg.man.poznan.pl:2811//home/plgrid/plgpiontek/reef/WF/${JOB_ID}.${TASK_ID}</location>
 </directory>
 </stageInOut>
 </execution>
 <executionTime useReservation="false">
 <executionDuration>PT10M</executionDuration>
 </executionTime>
 </task>
 <task extension="task1" persistent="true" taskId="task2">
 <candidateHosts>
 <hostName type="INCLUDE">agave</hostName>
 </candidateHosts>
 <execution type="single">
 <executable>
 <execFile>
 <file name="wf.qcg">
 <location type="URL">qcg://USE_SCRIPT_CONTENT/wf.qcg</location>
 </file>
 </execFile>
 </executable>
 <stdout>
 <file>
 <location
type="URL">gsiftp://qcg.man.poznan.pl:2811//home/plgrid/plgpiontek/reef/WF/output.${JOB_ID}.${TASK_ID}</location>
 </file>
 </stdout>
 <stderr>
 <file>
 <location
type="URL">gsiftp://qcg.man.poznan.pl:2811//home/plgrid/plgpiontek/reef/WF/error.${JOB_ID}.${TASK_ID}</location>
 </file>
 </stderr>
 <stageInOut>
 <directory creationFlag="OVERWRITE" name="${JOB_ID}.${TASK_ID}" type="out">
 <location
type="URL">gsiftp://qcg.man.poznan.pl:2811//home/plgrid/plgpiontek/reef/WF/${JOB_ID}.${TASK_ID}</location>
 </directory>
 </stageInOut>
 </execution>
 <executionTime useReservation="false">
 <executionDuration>PT10M</executionDuration>
 </executionTime>
 <workflow>
 <parent triggerState="FINISHED">task1</parent>
 </workflow>
 </task>
</qcgJob>

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 29 of 34

5.2 QCG job description for Replica Computing pattern (BAC

application)

<?xml version="1.0"?>
<qcgJob appId="bac-compat-muc">
 <task persistent="true" taskId="namd">
 <requirements>
 <resourceRequirements>
 <computingResource>
 <hostParameter name="queue">
 <stringValue value="test"/>
 </hostParameter>
 </computingResource>
 </resourceRequirements>
 <patternTopology>
 <kernels>
 <kernel id="namd_kernel"/>
 </kernels>
 <classes>
 <class id="c1">
 <node host="supermuc">thin</node>
 </class>
 </classes>
 <plans>
 <plan id="plan1">
 <criteria>
 <time>P0Y0M0DT3H0M</time>
 </criteria>
 <group>
 <kernel refid="namd_kernel">
 <class refid="c1">
 <nodes>32</nodes>
 </class>
 </kernel>
 </group>
 </plan>
 </plans>
 </patternTopology>
 </requirements>
 <execution type="compat">
 <executable>
 <application name="bash"/>
 </executable>
 <arguments>
 <value>bac-namd.sh</value>
 <value>${PS_rep}</value>
 </arguments>
 <stageInOut>
 <file name="bac-namd.sh" type="in">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/muc-bac-namd.sh</location>
 </file>
 <directory name="input" type="in">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/input</location>
 </directory>
 <file name="qcg.debug" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/output/output-muc-${JOB_ID}-namd-
rep${PS_rep}.qcg.debug</location>
 </file>
 <file name="_stdouterr" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/output/output-muc-${JOB_ID}-namd-
rep${PS_rep}.stdouterr</location>
 </file>
 </stageInOut>
 </execution>
 <executionTime useReservation="false">
 <!-- walltime 1h for this task -->
 <executionDuration>P0Y0M0DT3H0M</executionDuration>
 </executionTime>
 <parametersSweep>
 <!-- this task will be replicated (parametrized) according to the 'rep' parameter
 (in this case 2 times) -->
 <parameter>
 <name>rep</name>
 <value>
 <loop>
 <start>1</start>
 <end>2</end>
 <step>1</step>
 <decimalPlaces>0</decimalPlaces>
 </loop>
 </value>
 </parameter>
 </parametersSweep>
 </task>
 <!-- each 'amber' task will be executed in the corresponding 'namd' working directory
 - there is no need to transfer files between two stages of the workflow -->
 <task taskId="amber" extension="namd_PSit${PS_it}">
 <requirements>
 <resourceRequirements>
 <computingResource>
 <hostParameter name="queue">
 <stringValue value="test"/>
 </hostParameter>
 </computingResource>
 </resourceRequirements>
 <patternTopology>
 <kernels>

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 30 of 34

 <kernel id="amber_kernel"/>
 </kernels>
 <classes>
 <class id="c1">
 <node host="supermuc">thin</node>
 </class>
 </classes>
 <plans>
 <plan id="plan1">
 <criteria>
 <time>P0Y0M0DT3H0M</time>
 </criteria>
 <group>
 <kernel refid="amber_kernel">
 <class refid="c1">
 <cores>2</cores>
 </class>
 </kernel>
 </group>
 </plan>
 </plans>
 </patternTopology>
 </requirements>
 <execution type="compat">
 <executable>
 <application name="bash"/>
 </executable>
 <arguments>
 <value>bac-amber.sh</value>
 <value>${PS_rep}</value>
 </arguments>
 <stageInOut>
 <file name="bac-amber.sh" type="in">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/muc-bac-amber.sh</location>
 </file>
 <directory name="input/replicas/rep${PS_rep}" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/output/output-muc-${JOB_ID}-
rep${PS_rep}</location>
 </directory>
 <file name="qcg.debug" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/output/output-muc-${JOB_ID}-amber-
rep${PS_rep}.qcg.debug</location>
 </file>
 <file name="amber.log" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/output/output-muc-${JOB_ID}-amber-
rep${PS_rep}.log</location>
 </file>
 <file name="_stdouterr" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/output/output-muc-${JOB_ID}-amber-
rep${PS_rep}.stdouterr</location>
 </file>
 </stageInOut>
 </execution>
 <executionTime useReservation="false">
 <executionDuration>P0Y0M0DT3H0M</executionDuration>
 </executionTime>
 <workflow>
 <!-- the 'amber' task will start after 'namd' successfully finish;
 each 'amber' parameter sweep task is started after coresponding 'namd'
 task ('rep' variable) -->
 <parent triggerState="FINISHED">namd_PSit${PS_it}</parent>
 </workflow>
 <parametersSweep>
 <parameter>
 <name>it</name>
 <value>
 <loop>
 <start>0</start>
 <end>1</end>
 <step>1</step>
 <decimalPlaces>0</decimalPlaces>
 </loop>
 </value>
 </parameter>
 <parameter>
 <name>rep</name>
 <value>
 <loop>
 <start>1</start>
 <end>2</end>
 <step>1</step>
 <decimalPlaces>0</decimalPlaces>
 </loop>
 </value>
 </parameter>
 </parametersSweep>
 </task>
</qcgJob>

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 31 of 34

5.3 QCG job description for Extreme Scalling pattern (FUSION

application)

<?xml version="1.0"?>
<qcgJob appId="compat-FUSION-test" project="compat" xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="E:\Documents\Work\ComPat\Londyn-
Brunel\desc\QCGJobDescriptionSchema.xsd">
 <task persistent="true" taskId="ES-task-2">
 <requirements>
 <patternTopology>
 <!-- here we define kernels as logical units for the use in the resource requirements section;
 definition might be extended with additional parameters in the future -->
 <kernels>
 <kernel id="turb">
 <helper id="init"/>
 <helper id="transp"/>
 <helper id="equil"/>
 <helper id="f2dv"/>
 <helper id="dupEquil"/>
 <helper id="dupCorep"/>
 </kernel>
 </kernels>
 <!-- definition of the classes - as a sets of node types -->
 <classes>
 <class id="c1">
 <node host="supermuc"> thin </node>
 <node host="eagle"> haswell_128 </node>
 </class>
 <class id="c2">
 <node host="supermuc"> thin </node>
 </class>
 <class id="c3">
 <node host="eagle"> haswell_128 </node>
 </class>
 </classes>
 <plans>
 <plan id="plan1">
 <criteria>
 <time>PT14H00M</time>
 <!-- check -->
 </criteria>
 <group>
 <kernel refid="turb">
 <class refid="c1">
 <cores>1024</cores>
 </class>
 </kernel>
 </group>
 </plan>
 <plan id="plan2">
 <criteria>
 <time>PT28H00M</time>
 <!-- check -->
 </criteria>
 <group>
 <kernel refid="turb">
 <class refid="c2">
 <cores>512</cores>
 </class>
 </kernel>
 </group>
 </plan>
 </plans>
 <!-- use of reservations is optional
 <reservations>
 <reservation host="eagle">eagle-res-1</reservation>
 <reservation host="inula">inula-res-2</reservation>
 <reservation host="zeus">zeus-res-2</reservation>
 </reservations>-->
 </patternTopology>
 </requirements>
 <execution type="compat">
 <executable>
 <application name="muscle2" version="compat-1.2"/>
 </executable>
 <arguments>
 <value>test.cxa.rb</value>
 </arguments>
 <stdout>
 <directory>
 <location type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-
test/results</location>
 </directory>
 </stdout>
 <stderr>
 <directory>
 <location type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-
test/results</location>
 </directory>
 </stderr>
 <stageInOut>
 <file name="test.cxa.rb" type="in">
 <location type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-
test/test.cxa.rb</location>
 </file>
 <file name="inputs.tgz" type="in">
 <location type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 32 of 34

test/inputs.tgz</location>
 </file>
 <file name="extract_inputs.sh" type="in">
 <location type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-
test/extract_inputs.sh</location>
 </file>
 <directory name="outputs" type="out">
 <location type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-
test/results</location>
 </directory>
 </stageInOut>
 <environment>
 <variable name="QCG_MODULES_LIST">compat/apps/fusion</variable>
 <variable name="QCG_PREPROCESS">extract_inputs.sh</variable>
 <!-- is it needed? -->
 <!--<variable name="QCG_POSTPROCESS">ex1.postprocess</variable> is it needed? -->
 </environment>
 </execution>
 <executionTime>
 <!-- we do not need this anymore -->
 <executionDuration>P0Y0M0DT14H00M</executionDuration>
 </executionTime>
 </task>
</qcgJob>

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 33 of 34

6 References

[1] Deliverable D5.1 – Architecture of the ComPat system: http://www.compat-project.eu/wp-

content/uploads/2016/07/ComPat_D5.1.pdf

[2] Deliverable D2.2 – First Report on Multiscale Computing Patterns and Algorithms

[3] tsocks library: http://tsocks.sourceforge.net

[4] Hsu, Chung-Hsing, and Wu-Chun Feng. "Effective dynamic voltage scaling through CPU-

boundedness detection." International Workshop on Power-Aware Computer Systems. Springer

Berlin Heidelberg, 2004.

[5] Freeh, Vincent W., et al. "Exploring the energy-time tradeoff in mpi programs on a power-

scalable cluster." Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE

International. IEEE, 2005.

[6] Ge, Rong, et al. "CPU miser: A performance-directed, run-time system for power-aware

clusters." Parallel Processing, 2007. ICPP 2007. International Conference on. IEEE, 2007.

[7] Rountree, Barry, et al. "Adagio: making DVS practical for complex HPC applications."

Proceedings of the 23rd international conference on Supercomputing. ACM, 2009.

[8] Ge, Rong, et al. "Powerpack: Energy profiling and analysis of high-performance systems and

applications." IEEE Transactions on Parallel and Distributed Systems 21.5 (2010): 658-671.

[9] Valentini, Giorgio Luigi, et al. "An overview of energy efficiency techniques in cluster

computing systems." Cluster Computing 16.1 (2013): 3-15.

[10] Marathe, Aniruddha, et al. "A run-time system for power-constrained HPC applications."

International Conference on High Performance Computing. Springer International Publishing,

2015.

[11] Rountree, Barry, et al. "Beyond DVFS: A first look at performance under a hardware-enforced

power bound." Parallel and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2012 IEEE 26th International. IEEE, 2012.

[12] Patki, Tapasya, et al. "Exploring hardware overprovisioning in power-constrained, high

performance computing." Proceedings of the 27th international ACM conference on

International conference on supercomputing. ACM, 2013.

[13] Hackenberg, Daniel, et al. "An energy efficiency feature survey of the intel haswell processor."

Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International.

IEEE, 2015.

[14] Inadomi, Yuichi, et al. "Analyzing and mitigating the impact of manufacturing variability in

power-constrained supercomputing." Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. ACM, 2015.

ComPat - 671564

 [D5.2 Firs Report on ComPat Middleware Services] Page 34 of 34

[15] Acun, Bilge, Phil Miller, and Laxmikant V. Kale. "Variation among processors under turbo boost

in hpc systems." Proceedings of the 2016 International Conference on Supercomputing. ACM,

2016.

[16] Alowayyed, Saad, et al. "Multiscale Computing in the Exascale Era." arXiv preprint

arXiv:1612.02467, 2016.

