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1. Executive summary 

This document summarises the work done so far in the design of the parallel debugging and performance 

analysis tools to be used in ComPat. As per the Description of Actions (DoA), work so far has focussed 

on the gathering of requirements for the tools from project partners, as well as their high level design 

(see Tasks 4.1-3) such that they can be used in an effective manner in the development of multiscale 

simulations. The tools used as part of ComPat are provided by ARM (formerly Allinea Software Ltd.), 

and for the remainder of the report any mention of ‘tools’ implicitly refers to Allinea tools. The work 

performed so far has been on target with the timeline in the DoA. In particular, this document serves as 

proof that “Milestone 7: Ad-hoc capability for merging individual scale performance profiles to create 

one multiscale profile” and “Milestone 8.2: First version of the high level tools” have been completed. 

 Task 4.1 is responsible for the gathering of requirements from users and the design of an 

architecture for debugging and profiling multiscale applications, has been marked as complete, with the 

delivery of Deliverable 4.1 [1]. 

Tasks 4.2 and 4.3 (Energy and Performance Profiling and Expert Advice) have begun and are 

in an investigative phase in order to establish the feasibility of proposed solutions and strengthen the 

design of product extensions. 

 The tools are mostly to be used by application developers part of Work Package 3. This 

deliverable focuses on the level of support available for the different applications, and the modification 

of the tools and environment to provide this support. This work also extends to the integration with the 

multiscale pattern service of Work Package 2, the middleware services of Work Package 5 and the 

Experimental Execution Environment (EEE) of Work Package 6. 

 In Section 2 we provide an update on the Allinea tools, and the developments relevant to the 

ComPat environment, these updates mark the completion of Milestone 8.2. Section 3 introduces the 

application support for four of the ComPat applications, Fusion, SandBox, BAC and ChemShell. Section 

4 presents an introduction to multiscale visualisation, and the completion of Milestone 7. Lastly, we 

outline the future work (Section 5) and conclude the deliverable (Section 6). 
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2. Tools Update for Multiscale Profiling 

This sections presents an update on the use of Allinea tools [2] for profiling multiscale applications. 

Specifically, we focus on the performance profiling using existing Allinea tools, and not on debugging 

capabilities. As such we present an update on the two existing Allinea performance tools, MAP and 

Performance Reports. The latest version of these tools (v7.0.1) was released in advance of the month 18 

review to constitute delivery of Milestone 8.2. 

In Deliverable 4.1, we presented the current state of the tools, and the proposed enhancements to 

the tools to support the computing patterns and the environment unique to the ComPat project. 

 

2.1. Allinea DDT 

At this time in the project the majority of the effort to integrate Allinea tools into the ComPat stack has 

been to enable performance profiling, as opposed to debugging. 

 

The Allinea DDT debugger can be launched in one of two modes. Firstly, an offline debugging mode – 

which does not allow for user interaction but generates a report on the detection of a crash. It can also 

provide some information on metrics such as memory leaks. This offline debugging can be integrated 

with the existing ComPat environment, in the same way that performance profilers are launched. Allinea 

DDT is used as a wrapper script around the `mpirun` command, which launches the application. In this 

scenario DDT is activated but does not display a GUI, or wait for user interaction, the application is just 

started asper normal, except with the debugger attached. As the launcher mechanism in DDT is the same 

as that in MAP the mechanisms shown in this document to attach MAP will also work for DDT offline 

debugging. 

Whilst offline debugging can be used in some cases, for reporting crash information, the 

majority of debugging cases would require user interaction – which is not feasible in offline debugging. 

Thus only including support for offline debugging has some severe limitations. For increased capability 

we need to make use of interactive debugging, which presents a number of additional challenges. 

Currently a number of these capabilities have not been implemented to fully integrate into the ComPat 

environment. These have been previously discussed in Section 2.2 of Deliverable 4.1. 

To perform interactive debugging, we need to be able to forward information from a debugging 

program to a GUI. When we are able to launch a GUI session we can enable debugging with relative 

ease. For example, we can integrate DDT launching into MUSCLE2 to debug a specific kernel of the 

simulation. This can already integrate with schedulers, such a Slurm [3], however the addition of QCG 

presents another ‘hop’ in the chain that we must forward data through. This capability is due to be 

developed in the latter part of the project, referred to as ‘deep track’.  
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2.2. Allinea MAP 

A number of updates have been made to the Allinea MAP software stack, so support the ComPat 

environment. The majority of this work has focused on the support of the MUSCLE2 communication 

library. However, a number of other developments have beneficial applications to ComPat. Allinea MAP 

provides the primary profiling tool for applications, however, developments to the Allinea Performance 

Reports product are documented in Section 2.3. 

2.2.1. MUSCLE2 Custom Metric 

 

As part of the support for the ComPat environment it became crucial to provide some support for the 

MUSCLE2 communication library. This library allows multiple MPI applications to communicate with 

each other. This forms the basis on a number of the applications within the computational patterns 

profile. 

 

In Deliverable 4.1 we identified a set of key performance metrics for capturing the performance of an 

application with MUSCLE2 integration. We reproduce that initial list below:  

• Send rate (B/s) over MUSCLE 

• Receive rate (B/s) over MUSCLE 

• Time spent in MUSCLE function calls (s) 

• The rate of MUSCLE function calls (calls/s) 

 

To generate this custom metric, we had to modify the MUSCLE2 library, to provide the required 

software performance counters, and expose them to the Allinea MAP custom metrics interface. 

These changes have been integrated into the MUSCLE2 github repository [4], within the ‘compat’ 

branch – and are enabled at compile time through the performance ‘-p’ flag. 

 

The custom metric is then built against this new MUSCLE2 library, and installed locally in a user’s 

home space. The set of metrics made available through this library are listed below: 

• MUSCLE2 sent rate (B/s) 

• MUSCLE2 send calls (/s) 

• MUSCLE2 send duration (s) 

• MUSCLE2 receive rate (B/s) 

• MUSCLE2 receive calls (/s) 

• MUSCLE2 receive duration (s) 

• MUSCLE2 barrier calls (/s) 

• MUSCLE2 barrier duration (s) 



ComPat - 671564 

[D4.2 Report on status of performance profiling of multiscale simulations] 

 Page 8 of 35 

 

This data is presented in a very similar manner to that of MPI communications, in a process centric 

way. However, this can cause some issue with MPI applications, as a current limitation of 

MUSCLE2 is that only the master MPI process (rank 0) can communicate. For a large scale parallel 

job this means that activity within MUSCLE2 is generally only reported on a single thread, the 

activity of the other threads is attributed to other behaviour. This will most often be an MPI call, 

due to the need for synchronisation. 

 

Visualising MUSCLE2 performance data in Allinea MAP (see Figure 1) therefore shows a single 

rank ‘max value’ (highlighted by the top red point of the MUSCLE2 receive duration graph) and all 

other ranks reporting 0s. This naturally impacts the derived metrics, such as mean and standard 

deviation. However, this is actually representative of the underlying behaviour of the application.  

 

From Figure 1 we can see the intertwined behaviour of MUSCLE2 and MPI. Whilst only a single 

MPI rank is communicating over MUSCLE2, all other processes must wait at the next 

synchronisation point, most likely MPI. This creates a natural duality between the two libraries, 

represented by their call durations. 

 

The exception to this behaviour is the MUSCLE2 barrier call, as this is executed by all processes, 

within the MPI job. This means that the activity time is split between the different calls, the associate 

MUSCLE2 communication for the MUSCLE rank and the MUSCLE2 barrier for the other ranks. 

 

 

Figure 2: MUSCLE2 activity distribution 

Figure 1: MPI vs MUSCLE2 call duration 



ComPat - 671564 

[D4.2 Report on status of performance profiling of multiscale simulations] 

 Page 9 of 35 

Figure 2 shows the case when we perform a MUSCLE2 barrier, before conducting the MPI 

communication. Here we have two processes, one performing the MUSCLE2 receive and the other 

waiting, in a MUSCLE2 barrier, hence the call duration is equal and the time split is between the 

different ranks.  

The code for this example is shown in Figure 3, from which Figure 2 was generated. Here we see 

that rank 0 performs the MUSCLE2 receive operation. The other MPI ranks can progress, normally 

to an MPI call – however, in this case we make use of the MUSCLE2 barrier to pause all ranks, 

before progressing to the MPI call, together. The motivation behind this behaviour is in the nature 

of the MUSCLE2 barrier, as it makes use of a passive wait, as opposed to the active wait used within 

MPI. This means when the MPI broadcast (line 256 in Figure 3) is executed, it acts as a 

synchronisation point, where all ranks wait for rank 0 to finish the MUSCLE2 call. This active wait 

is constantly cycling the CPU to enable it to respond as quickly as possible. In the case of MUSCLE2 

we are less concerned with this reaction speed, as the communications may be very slow, as the end 

points of communication may be compute resources in different countries. Hence it performance a 

passive wait, polling periodically for an update on rank status. This can save significant amounts of 

energy, if all processes of a large parallel job are waiting for a long time. However, they might be 

slightly slower to react when the communicating thread does return. 

 

2.2.2. JSON Export 

One of the major additions to the Allinea MAP tools has been support for JSON export of MAP 

performance data. This feature is designed to export the specific data contained within the MAP file in 

an open machine readable format. 

 

Specifically, a MAP profile will contain a number of samples. For each sample, the tool stores a set of 

values for each metric collected. Because we do not store the metric value for each process in a job, we 

instead store a fixed number of aggregated metric values. For example, for a metric, we aggregate across 

the metric value for every process and we store the maximum sample value, the minimum, the mean, 

the standard deviation and the sum. 

 

The JSON export feature allows the user to obtain this raw data, for each of the metrics collected. So 

for each metric collected the JSON file will contain up to 5000 values, 1000 sample value for each of 

the 5 different aggregation metrics discussed above. 

Figure 3: MUSCLE2 source code for behaviour in  Figure 2 



ComPat - 671564 

[D4.2 Report on status of performance profiling of multiscale simulations] 

 Page 10 of 35 

 

 

 

2.3. Allinea Performance Reports 

Performance Reports forms a secondary profiling tool for the ComPat project. It differs from Allinea 

MAP by providing single aggregated values for metrics of interest, as opposed to a temporal based 

analyses. This is useful for storing performance data (as a web page, as part of the output files), and for 

integrating back into the performance history, for prediction purposes, of application kernels. 

2.3.1. Partial Reports 

In addition to the MUSCLE2 custom metric for MAP Allinea Performance Reports has been extended 

to support data from custom metrics. With the case of the MUSCLE2 we have developed a partial report 

to display the aggregated metrics in Performance Reports. Performance Reports is designed to present 

a single aggregated value for a metric.  

 

In Figure 4 we show an example MUSCLE2 partial report displayed in Performance Reports, alongside 

other performance metrics. This data was collected from the large kernel as part of the tube example 

from the sandbox multiscale application, we cover this application in more detail in Section 3.2.  

Figure 4: MUSCLE2 partial report in Allinea Performance Reports 
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With the case of MUSCLE2 metrics we have taken an approach to aggregation which better represents 

the usage model of MUSCLE2. When you have a MUSCLE2 send or receive call it is only performed 

from a single MPI rank (rank 0), regardless of how many MPI ranks are active within the job. With the 

custom metric we record the send and receive activity – on all MPI ranks, despite only one being active. 

Thus when it comes to aggregating this data we have two phases of aggregation – across the ranks and 

then across the samples. 

 

With MUSCLE2 send and receive calls we need to take the maximum values across the ranks and then 

calculate the mean (or max) across the samples. This means that as the number of MPI ranks scales the 

mean will not be impacted by this – and will only report on the activity of rank 0. 

However, in the case of MUSCLE2 barrier this can be called by all MPI ranks, thus scaling the MPI 

ranks will have an impact on the barrier metrics, so we must take a mean aggregation across the ranks 

and a mean or max across the samples. 

 

This capability forms the first step of the expert advice framework for ComPat applications – as 

described by Task 4.3. 

2.3.2. JSON Export 

Similar to the JSON export capability of Allinea MAP we have developed a similar capability for Allinea 

Performance Reports. This facilitates the export of the aggregated metric data to a machine readable 

format, in a similar layout to that of MAP. The export capability of the two tools is complimentary to 

the extent that the data can be consumed by third party tools to provide data analytics from multi source 

data.  

 

The export capability for Performance Reports is of particular relevance to the ComPat project, as the 

aggregated data can feed directly into the ComPat tool set, specifically performance matrix component 

of the pattern service. The performance data collected for multiscale simulations can be recaptured, and 

used to help performance prediction and optimisation criterion when submitting a QCG job, this is 

covered in more detail in Section 2.4.3.  
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2.4. Integration with ComPat Tools 

2.4.1. MUSCLE2 

MUSCLE2 is a key component in many of the multiscale model applications, providing a means for 

multiple kernels to be executed in parallel and communicate. As such it is important for the Allinea tools 

to integrate with MUSCLE2.  

In Figure 5 we show how a native instance can be used to launch Allinea. Specifically, we are launching 

three instances of MAP, one for each kernel – thus we are profiling all of the kernels simultaneously as 

if they were standalone applications. Here the MUSCLE2 framework is calling MAP from within the 

parallel job – telling it to do offline profiling and generate a specific MAP file named by the kernel 

name.  

2.4.2. QCG (and the EEE) 

 

QCG is used within ComPat as the brokering service to select the resources to submit to. It acts as a 

meta-scheduler to provide a consistency over the different schedulers used on the different HPC 

platforms. 

 

Integrating Allinea tools with QCG can be done in different ways. Firstly, we focus on the so called off-

line profiling. That is to launch the profiler (either Allinea MAP or Performance Reports) and collect 

results without any further user interaction. 

An online capability would be required to perform interactive debugging of an application. This 

capability requires tighter integration and has not been fully explored. 

Figure 5: Allinea MAP integration with MUSCLE2 native instance 
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Figure 6 shows how QCG can be used to launch a MUSCLE2 application on the EEE, in this example 

we make use of the SandBox application. This specific example is using MUSCLE2 to profile the three 

different application kernels with Allinea MAP, as shown in Figure 5.  

At the end of the profiled kernel, MAP will generate the output file (e.g. small.map), the QCG script 

moves these files to the QCG working directory and instructs the job to stage these files back out to the 

submission machine. 

2.4.3. Pattern Service 

 

The pattern service is responsible for generating the description of the multiscale model job to pass to 

QCG. Part of this process is providing the performance information for the components of the job, to 

allow QCG to broker for resources as optimally as possible. 

For this purpose, a performance matrix is used. This details the performance characteristics of the 

kernels under different environment conditions (node type, core counts, problem size). The role of 

Allinea tools is to provide some of the data to populate this performance matrix. Currently, the primary 

focus of brokering is to reduce the runtime of an application, with an intention to start including 

information for energy usage. For this it is simple to use Allinea Performance Reports to collect 

information from application runs, and feed in back into the pattern service.  

A simple feedback loop could be used, based on the JSON export of Performance Reports, to feed the 

performance information of a kernel, which has just finished running, back into the performance matrix. 

This level of integration would require some additional engineering, to correctly capture the kernel 

Figure 6: QCG script to launch MUSCLE2 running with Allinea MAP – shown in Figure 5 
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information (from the pattern service or MUSCLE2) and the system information (from QCG), and store 

the data in a central data store. 

3. Application Profiling with Allinea Tools 

In this section we detail the progress that has been made to profile the ComPat multiscale applications 

with the Allinea toolset. The nuances of each application present different challenges to profiling, as 

such, we present the modifications made to enable their profiling. 

3.1.  Fusion Application 

The fusion application is a MUSCLE2 based extreme scale demonstrator. The Allinea tool support has 

been provided via the MUSCLE2 integration (Section 2.4.1) and the MUSCLE2 custom metric (Section 

2.2.1). The application simulates the time evolution of electron and ion temperature profiles (macro) in 

the core of the plasma and the effects of turbulence at micro scales. It consists of 3 submodels (transport, 

equilibrium and turbulence) and one numerical tool (to convert heat fluxes coming from the turbulence 

submodel into coefficients taken into account by the transport submodel to evolve the temperature 

profiles). The turbulence code (GEM, 3D gyrofluid fluxtube approximation) is the primary submodel 

and all other codes (ETS for 1D transport, CHEASE for 2D equilibrium and imp4dv to convert fluxes) 

are auxiliaries in this extreme scaling scenario. The initial plasma state corresponds to a discharge on 

the ASDEX Upgrade Tokamak in IPP Garching. 

 

In this example all four submodels are profiled by Allinea MAP simultaneously. The GEM kernel is 

MPI based which is scaled with core count, whereas the three auxiliary models are executed in serial in 

support of the turbulence code. The profile shown in Figure 8 shows the primary kernel of the fusion 

application. What we see from this profile is that the vast majority of the application time is spent 

computing and communicating with MPI – and not with MUSCLE2. As MUSCLE2 calls only take 

place from a single MPI rank it would be very detrimental to system efficiency if all MPI ranks are 

waiting for the MUSCLE2 rank to receive data. In this example this synchronisation overhead is 

represented by the time spent in MPI calls – which aligns with the MUSCLE2 receive duration.  

 

In Figure 7 we present the profile for one of the three supporting kernels of the fusion application, 

specifically the Chease kernel. In this scenario the kernel is run in serial – and spends most of its time 

waiting for data – as shown in the saw tooth profile of the call duration time. We can see that minimal 

time is actually spent computing, which is acceptable in this case as it is a serial application running on 

a small amount of computing resources. Chease feeds the primary model with data. As such, a loss of 

efficiency for the sub model is acceptable to reduce the overall cost of the parallel primary model. 
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Figure 8: The Gem kernel in the Fusion application on 512 cores 

Figure 7: MUSCLE2 profile of Gem kernel in support of simulation in Figure 8 
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3.2.  SandBox 

The SandBox application is another MUSCLE2 based application. It makes use of the Palabos Lattice 

Boltzmann library. For testing purposes, we have been making use of the tube example which runs three 

kernels in parallel – a large and two small kernels. In this multiscale model we consider a cell-based 

blood suspension model as the primary model, coupled to continuous LBM blood flow models as the 

auxiliary models. This multiscale model mimics the real situation of virtual artery - under development 

in at the University of Amsterdam. This model is used as a proof of concept of the ideas of pattern 

service by changing some simulation parameters. The current test case uses 1283 and 323 lattice size for 

the primary and auxiliary models. 

 

Allinea tools support for SandBox is achieved in a very similar way to the fusion application (Section 

3.1). In Figure 10, Figure 11 and Figure 12 we show the profiling capability of the Allinea tools on the 

sandbox application. Specifically, we focus on the MUSCLE2 call time, and the MPI call time, as this 

highlights the interplay between the ranks within a kernel and the different kernels. We note how the 

large kernel starts with a processing phase while the other two kernels await data. The two small kernels 

then perform their operation before the whole application closes. In this example only a single motif of 

the model is executed, though it is expected that multiple motifs are executed, thus a more cyclic 

behaviour is expected, such as the behaviour seen in the fusion application in Section 3.1. 

 

One interesting artefact shown in the large kernel is the computational resource for the MUSCLE2 

receive call – as we can see it is spending all of its time in memory operations – as it is polling a variable 

to check if it is ready to progress. 

 

Note that in this example not all of the kernels run for the entire duration, and so the timelines cannot 

be compared directly, as they are presented as individual application profile. The combination of these 

profiles, into a cohesive multiscale simulation visualisation is a separate topic of research which we 

present in Section 4. The layout of the kernels, in terms of processing dependency, is depicted in Figure 

9. 

  

Figure 9: SandBox Tube example kernel connectivity 
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Figure 10: SandBox Tube example profile of the small kernel 

Figure 11: SandBox Tube example profile of the small2 kernel 

Figure 12: SandBox Tube example profile of the large kernel 
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In Figure 13 we show the profile of a modified version of the small kernel, as opposed to the original 

presented in Figure 10. In this example we have inserted a MUSCLE2 barrier just after the MUSCLE2 

receive. This forces the MPI process to wait in MUSCLE2 before it can progress. This means the time 

is reported as MUSCLE2 cost rather than an MPI cost, as we are changing where the synchronisation is 

attributed to. As discussed in Section 2.2.1 the advantage of using a MUSCLE2 barrier rather than an 

MPI synchronisation is that MUSCLE2 can make use of an idle wait, as opposed to a busy wait, and 

potentially reduce the energy consumption of the idle portion of a kernel. 

 

3.3.  Binding Affinity Calculator (BAC) 

 

The Binding Affinity Calculator (BAC) is a molecular dynamic code based on the NAMD [5] scientific 

library and AMBER [6]. NAMD itself is based in the CHARM++ parallelisation library, as opposed to 

MPI. Allinea has traditionally provided support for MPI based parallel applications, and does not have 

direct support for native CHARM++ [7].  

 

To support profiling of the BAC application in Allinea tools, we have had to reconfigure CHARM++ to 

make use of MPI as the underlying communication layer. However, this requires that the NAMD library 

must be rebuilt against this new version of CHARM++, and the use of MPI as the underlying 

communication layer may have some impact on availability of features. 

 

BAC makes use of the replica computating model. As such it launches multiple applications in series, 

which are profiled using Allinea MAP. Unlike the MUSCLE2 based applications, BAC passes 

information between models using files. Thus, file I/O can be monitored as a proxy for inter-model 

communication cost.  

Figure 13: Modified SandBox small kernel to use a MUSCLE2 barrier before MPI communications 
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In Figure 14 we present the connectivity between the multiscale replicas, and the flow of information 

between them, in our four replica example. Here we have four replicas run consecutively, with no 

information transfer during each application instance, only from the end of one replica to the start of the 

next. 

 

To enable the profiling of the BAC application we must configure Charm++ to insert environment 

variables into the launch script before the ‘mpirun’ command. These environment variables are 

Figure 14: BAC 4 replica example connectivity flow 

Figure 15: QCG run script fragment for running NAMD with Allinea MAP 

Figure 16: Charm++ run script to profile with Allinea MAP 
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generated and controlled by QCG. Shown in Figure 15, we present a fragment from the QCG submission 

script, this sets the `ALLINEA_CHARM_TOOL_CMD` and `ALLINEA_CHARM_TOOL_ARGS` 

environment variables which are picked up by our customised Charm++ run script, shown in Figure 16. 

 

In Figure 17 we present an Allinea MAP profile of one of the BAC kernels, running NAMD. In this case 

we are executing a single replica, formed of four NAMD kernels and one Amber kernel. In this case we 

are displaying the `eq2-rep1.conf ` NAMD configuration, which is the third of our simulation of four 

NAMD kernels. As discussed previously we see two small I/O phases, a read phase at the start and a 

write phase at the end – to obtain and distribute data, respectively. Beyond these phases nearly no I/O 

takes place, thus clearly distinguishing them. 

 

The BAC application presents an additional point of interest for profiling with Allinea tools, as it 

operates a task based programming paradigm. A traditional application profile assumes that all ranks 

are operating in an approximation of lock-step progression. This is not the case with BAC, as each rank 

is operating independently. This is represented in Figure 18, where we see the distribution of work is 

roughly split across four work queues performing two functions.  
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Figure 17: BAC 3rd of 4 NAMD kernels in the replica 
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Figure 18: Work distribution of BAC tasks 
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3.4.  ChemShell 

ChemShell is a scriptable computational chemistry environment with a particular strength for combined 

quantum mechanical and molecular mechanical (QM/MM) simulations and is widely used for both 

materials modelling and biochemical calculations. The test cases include a typical bioactive molecule 

C10H11N5O5PS and a typical embedded MgO cluster (251 atoms) employing QM code GAMESS-UK 

[8] and MM code GULP [9]. 

 

The ChemShell application is an interesting application to profile within the Allinea tools. It is a 

framework which connects kernels of different chemistry packages together to solve a wider problem, 

as such, it is itself a framework. 

 

Figure 19 shows the rough calling path of the ChemShell application making use of two kernels 

(GAMESS-UK and GULP). An initial python framework launches a ‘chemsh.x’ executable, written in 

C, this executable can be run with MPI and launces parallel kernels. However, the computational work 

actually takes place inside the specific kernels. This means to obtain a representative MAP profile we 

must ensure that the resulting kernels are profiled correctly. 

Figure 19 shows where we have injected the Allinea MAP instrumentation, at the same level where MPI 

is used. This allows MAP to make use of the MPI environment and to track all processes which are 

spawned by the ‘chemsh.x’ application. As previously discussed the Allinea support for python is 

limited, which is a concern as python is being used to launch the kernels. However, in this case we are 

less concerned with the performance of the python component – only that of the kernels which are called. 

Figure 19: ChemShell framework and the interjection of Allinea MAP 

`ALLINEA_MPI_INIT_PENDING=1 ALLINEA_MPI_INIT=MPI_Init map --profile` 

Listing 1: ChemShell environment parameters for Allinea MAP 
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What is important is to be able to trace the call stack from the primary application into the execution 

kernels.  

 

We note that because the MPI_Init is not called from directly within the chemsh.x application, but within 

one of the loaded libraries. The Allinea tools make use of the `MPI_Init` call as a synchronisation point, 

however having the call in a different library means that the function pointer is located in a different 

translation unit. This means that Allinea MAP may have issues identifying the correct location of the 

function call, which can inhibit profiling. As such, we have modified the chemsh.py python script to set 

a few environment variables to ensure the application is profiled correctly. This configuration is detailed 

in Listing 1. 

 

From Figure 20 we see an example of the generated call stacks for ChemShell within Allinea MAP. In 

this example we can see the top level calling application ‘chemsh’ with both a call to the ChemShell 

GAMESS-UK interface and the GULP main. Additionally, we can see activity within the python 

control. At this time, we only report the python function name, and not the line number or source code 

view. 

 

 

Figure 20: Call stacks within ChemShell 

Figure 21: Profile of the ChemShell application in Allinea MAP 
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In the profile shown in Figure 21 we can see the ChemShell application running on the STFC platform 

Neale, across two nodes. The behaviour we see is heavily I/O dominated – in what appears to be an 

inefficient way. We see about 40% of the runtime performing I/O at the start of the job, which results in 

some load imbalance, which is indicated by the MPI call synchronisation time (acting as a barrier). The 

latter phase of the computations is composed of a high amount of CPU activity with some efficient data 

reads and some MPI communication – but minimal load imbalance. 

Another interesting metric here is the energy consumption. We see it loosely follows the behaviour of 

the I/O profile – low energy during the inactive I/O phase – and drops during MPI activity. 

 

 

4. MultiScale Visualisations 

A key component for Work Package 4 was the development of a capability to visualise performance 

data from a multiscale simulation. Traditionally, the Allinea performance analysis tools (Allinea MAP 

and Performance Reports) capture data for the execution of a single application, and as such generate a 

single profile which can be visualised. Within the ComPat project, applications do not operate in a 

standalone manner, and different applications are more tightly coupled. In order to visualise data from 

interlinked applications, data needs to be collected and aggregated before presenting this back to the 

user. Using the existing GUI to visualise all of the performance data collected would provide too much 

detail and would be difficult to navigate. 

4.1.  Data Store 

An important prerequisite of a data visualisation system is having a data store. Sections 2.2.2 and 2.3.2 

detail the development of the new JSON export capabilities in the Allinea toolset. This allows for the 

data contained within individual profiles to be exported to a common format, which can be further 

processed or aggregated. As such, a data store targeted towards handling JSON would be most desirable. 

 

Milestone 7 requires the generation of an ad-hoc capability to merge individual scale models to 

multiscale models. To these ends we have made use of the Elasticsearch [10] product , part of the Elastic 

cloud software stack. As a solution, Elasticsearch provides a very scalable means of storing and querying 

data, including in JSON format. An additional component in the Elastic software stack is Kibana. Kibana 

is a visualisation framework which sits on top of Elasticsearch. We present visualisations based on this 

software in Section 4.2.  
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4.2.  Visualisation 

Once the data from multiple executions is collected in an Elasticsearch store, we can start to form 

queries around the data to visualise it. Kibana is specifically designed to view temporal data, so we 

must express the queries in such a way that suits this representation. This is a limitation which will be 

addressed later in the project. 

 

Figure 22 presents the first such multiscale visualisation, based on a 2048 core fusion application run. 

Specifically, we are plotting the time spent in MUSCLE2 receive calls for the four model kernels, 

simultaneously. What we see here is that the three, serial, auxiliary models are spending lots of time 

waiting for communications with the primary (Gem) kernel. We can see an obvious cyclic behaviour 

in the call duration, caused by the iterations of the calculation.  

 

In Figure 23 we show how the visualisation framework can be used to compare runs of applications at 

different scale. In this scenario we focus on the CPU instruction mix of the Gem kernel from the fusion 

application when strong scaled across 512, 1024 and 2048 cores. From this visualisation we can see that 

the time being spent, as a percentage of instructions, in both memory (blue) and CPU floating point 

(green) decrease the more cores the application is run on. In this case the loss of CPU intensity is a result 

of increased MPI communications. 

We can observe this by plotting the rate of MPI calls (calls / second) for the three different scale of the 

run. In Figure 24 we present a statistical breakdown of this call rate. As the Allinea tools collect 

information at a relatively high frequency we can begin to perform a statistical analysis on the data, in 

this case looking at the percentile (1st, 25th, 50th, 75th and 99th percent) distribution of the call rate. From 

this we can observe that as we scale the core count not only does the mean call rate increase, but so does 

the variance. This suggests that the communication phases have become bunched, and that it alternates 

between periods of high intensity and periods of low intensity. 

 

The more data that can be captured from the system the more scope there is for data visualisation and 

analysis. For example, multiple executions of the same application under similar conditions could be 

used to assess run-to-run performance reproducibility. Whereas multiple runs under different conditions 

could be used to assess sensitivity to environmental factors, such as node type. 
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Figure 22: 2048 core Fusion multiscale simulation visualisation 
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Figure 23: Scaling of instruction breakdown for Fusion application Gem kernel 
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Figure 24: Distribution of MPI call rates for Figure 23 calculations 
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In Figure 25 we show a BAC replica computing example, plotting energy usage of the four replicas over 

time. The gradient of these four lines represents the power draw across the nodes, and the fact that they 

are straight lines represents that there are no major power fluctuations within the application. Changing 

the gradient of these curves represents a change in the overall energy consumption of the simulation, 

which is important as core goal of the ComPat project to address energy efficient computing. Even by 

just collecting this information, on a kernel by kernel basis, we can feed the pattern service, and the 

performance matrix, to improve the capability to estimate energy usage and schedule accordingly. 

We note that some of the time between the different application runs can be attributed to the overhead 

of the MAP profiler, incurred at the end of execution of generating the profiles.

Figure 25: Energy usage profile of BAC simulation on 84 cores 
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5. Future Developments 

5.1.  Interactive Debugging 

As discussed in Section 2.1 one of the current limitations of debugging with Allinea DDT is that there 

is minimal support for interactive debugging within the ComPat environment. As outlined in Deliverable 

4.1, additional components are required to support the data forwarding from end nodes through QCG 

back to a GUI on the user’s machine. This flow can be created with the QCG connect mode – a 

prerequisite of enabling this data flow was the implementation of a ‘quiet mode’ within QCG connect. 

This enables DDT tools to communicate through QCG with no additional data being injected by QCG, 

which would have caused difficulties within the DDT client. Now this mode is in place, work can begin 

to establish the additional forwarding client required.  

 

Another issue faced has been the use of GSISSH on SuperMUC as an authentication wrapper to SSH. 

DDT normally sets up an SSH channel to communicate through, however the use of GSISSH has caused 

additional issues for the Allinea tools, preventing the channel from being established. It is hoped that by 

passing all communications through QCG we should have more control on the flow of data, and will be 

more successful in enabling interactive debugging. 

Another issue faced has been the use of GSISSH on SuperMUC as an authentication wrapper to SSH. 

DDT normally sets up and SSH channel to communicate through, however the use of GSISSH has 

caused additional issues for the Allinea tools, preventing the channel from being established. It is hoped 

that by passing all communications through QCG we should have more control on the flow of data, and 

will be more successful in enabling interactive debugging. 

 

5.2.  Data Visualisations and Analytics 

In Section 4 we presented the current state of multiscale visualisations, this represents an ad-hoc 

capability to merge and visualise the data from multiple components of a simulation. This capability is 

not mature, and more work needs to be undertaken to establish a formal, and automated, means to collect 

and visualise this data. 

 

A key component of this will be working with the application teams in Work Package 3 and 

understanding their requirements for data visualisation. Additionally, it is important to undertake this 

work in close collaboration with Work Package 2, to ensure the full integration into the multiscale 

computing patterns and the overall ComPat workflow.   
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5.3.  ComPat Stack Integration and Meta-Data 

One of the really interesting research topics for this project is the level of integration with the pattern 

service and resource brokering, driven by the flow of information. By having the Allinea profilers run 

as part of multiscale simulations data can be captured at multiple points within the execution of these 

applications. However, alone this information lacks context from the wider execution environment. The 

computational pattern, and the MML description of the job, contain this context – providing information 

about exactly what was run, and in terms of the pattern why. This provides a valuable source of 

information to guide the multiscale simulations, and provide the explicit connectivity between individual 

activities. 

 

Equally the flow of information must pass both ways, the performance data collected from profiling 

must go back into the patterns service to help annotate the computational submodels with information 

such as runtime and energy usage. This information can in turn feed the performance matrix of the 

pattern service – which can feed QCG with performance estimations. Closing this information flow loop 

is a key contribution to the ComPat environment.  
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6. Conclusion 

In this deliverable, we have presented the progress on Tasks 4.2 and 4.3. We have shown the increased 

capability of the Allinea tools to integrate into the ComPat ecosystem and software stack, and have 

demonstrated a working profiling capability for four such applications. Work has initially focused on 

the profiling of applications, as opposed to debugging, due to the key importance of performance data 

within the project. 

 

The primary focus for collection of new performance data has been the integration with the MUSCLE2 

communication library. Specifically, we have presented the development of a custom performance 

metric to collect MUSCLE2 data from the communication library, and feed the data into Allinea MAP. 

On top of this we have developed a partial report plugin to display the MUSCLE2 performance data in 

Allinea Performance reports. The collection of this information, and other relevant metrics, can be used 

to feed back into the ComPat pattern service (WP 2), to improve the efficiency of the job submissions. 

 

The development of support for the different multiscale applications has been documented in this report, 

highlighting the modifications made to enable profiling. Additionally, we have detailed any additional 

changes to enable the integration with the wider ComPat environment, specifically the QCG brokering 

package. 

 

In addition to the collections of this extra data we have demonstrated the first capabilities to visualise 

multiscale performance data, by merging data from multiple individual application runs. This capability 

marks the completion of Milestone 7 (an ad-hoc capability for merging individual scale performance 

profiles to create one multiscale profile). Additionally, the software packages have been released and 

made available to project partners to constitute delivery of Milestone 8.2 (first version of higher level 

tools). 
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Annexes 

Allinea Commands 

Command Line Prefix Purpose Output 

ddt Start an interactive debugging 

session with a GUI on the local 

system 

No output file generated 

ddt --offline Start an offline debugging 

session 

HTML debug report generated 

ddt --connect Start a debugger which will 

connect to an available parent 

process. This is used in order to 

connect to a GUI running on a 

remote system in a ‘Reverse 

Connect’ procedure. See Section 

3.3 of the Allinea DDT User 

Guide [2] for more details. 

No output file generated 

map Start a profiling session in a GUI 

on the current system 

.map profile generated 

map --profile Start a profiling session without 

the need for a GUI 

.map profile generated 

perf-report Start a profiling session without 

the need for a GUI 

HTML summary profile 

generated 

Table 1: List of command line prefixes for launching Allinea tools, along with a brief description of files 

that are generated. 
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