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1 Executive summary

This document summarises the work done so far in instantiating computing patterns for High
Performance Multiscale Computing (HPMC) applications using the ComPat tools, software and

infrastructure.

We have successfully instantiated three fast-track applications (in the areas of nuclear fusion, drug
binding efficiency and blood-flow modelling) using the ComPat components on the Experimental
Execution Environment (EEE). The fast-track applications were identified in Deliverable 3.1 as those
where the single-scale models are well optimised and scale-bridging components (to couple different
single-scale models) are already developed. These applications cover two MCPs (Extreme Scaling and
Replica Computing) and require two different coupling environments (MUSCLE2 for ES and file-based
data exchange/FabSim for RC). As per the Description of Actions (DoA), this work is part of Task 3.2

“Instantiation and validation of multiscale computing patterns (M13-24)”.

The fast-track applications have, as planned, proved to be useful test cases for the Multiscale Computing
Pattern Software developed in WP 2, which enables an application to be executed on the EEE starting
from a Multiscale Modelling Language (MML) description of the application (Deliverable 2.2). As
described in Deliverable 2.2, once instantiated as a computing pattern, the Multiscale Computing Pattern
Software orchestrates the HPMC application to run as efficiently as possible on the EEE using the
ComPat technology described in Deliverables 5.1 and 5.2. In this document, we present the chain of
actions and configuration files required to achieve this instantiation from an end-user perspective
(Section 2.3 and the Annex). This document therefore provides a guide for future instantiations of other

HPMC applications.

In the next phase of the project, Tasks 3.2 and 3.3 will be active. For the former task, we will instantiate
the remainder of the deep-track applications; the process is described in this document, including the
scientific challenges this will allow us to study (Section 3). This includes the Heterogeneous Multiscale
Computing (HMC) pattern. The later task, in close collaboration with WP4, will provide us with
automatic collection of the performance of the applications to feed back into Multiscale Computing
Pattern Software (WP2). The next phase of the project requires close collaboration between WP2, WP3
and WP4, continuing our recent work in developing the Multiscale Computing Pattern Software in WP2

and instantiating HPMC applications in WP3.
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2 Report on instantiating Computing Patterns for HPMC

applications

2.1 Introduction

The objective of Work Package 3 “concerns the instantiation of multiscale computing patterns with the
selected grand challenges”. This includes “enabling application software to interface with high-level
tools and middleware services”. The aim of this document is to report on our progress in instantiating
applications as Multiscale Computing Patterns (MCPs) using ComPat technology components,
including the very recent work on the multiscale computing pattern software, described in Deliverable

2.2.

As described in Deliverable 3.1, assessing the readiness of our grand-challenge applications, it was clear
we should divide the applications into “fast” and “deep”-track. The fast-track applications were
identified as those where the single-scale models are well optimised and scale-bridging components (to
couple different single-scale models) are already developed. The deep-track applications required more
sophisticated multiscale computing scenarios and/or development of scientific scale-bridging methods
before they can be instantiated. In this phase of the project we have instantiated the fast-track
applications, and we describe the process of instantiating these computing patterns using the current
ComPat technology stack (WP 5) on the Experimental Execution Environment (EEE) (WP 6), and for
developing tools in WP 2 that convert Multiscale Modelling Language (MML) descriptions of
applications into task graphs and subsequently execution recipes (referred to as the multiscale computing
pattern software in the rest of this report). Please note that this Deliverable 3.2 was originally scheduled
in M24, but because of change of the reporting period from 12 months to 18 months during the grant
preparation phase, was brought forward to M18. This report is a snapshot of current work in progress,
and hence many of the specifications described here may be subject to change in subsequent reports.
We also briefly describe forthcoming work with the deep-track applications, which will take place in

later reporting periods.

We have so far instantiated the three fast-track applications. These applications cover two MCPs
(Extreme Scaling and Replica Computing) and require two different coupling environments (MUSCLE?2
for ES and file-based data exchange/Fabsim for RC). The fast-track applications are: calculating ligand-
protein binding affinities, global turbulence simulations and Red Blood Cells (RBCs) with platelet
transport. The latter two applications use the MUSCLE coupling environment as they require

communication between submodels at each iteration of the outer submodel. These applications are
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examples of the Extreme Scaling (ES) pattern. The ligand-protein binding affinities simulations (which
we refer to as the Binding Affinity Calculator (BAC) in the rest of this document) can be described as a
loosely-coupled application, where the results of one complete submodel simulation is used as input into
the next submodel (i.e. a workflow). As described in Deliverable 3.1, the BAC requires many identical
replicas of each submodels to produce a binding affinity with reproducible error, and hence this

application is an example of a Replica Computing (RC) pattern.

The work in this reporting period is highly aligned with ongoing Tasks 2.3, 4.3, 5.2 and 5.3, which are
described in detail in Deliverables 2.2, 4.2 and 5.3. Therefore, in this report, we focus on the instantiation
of computing patterns from an end-user perspective. The technical details regarding other work-
packages is addressed in their respective deliverables. We will also not discuss the scientific details of
each grand-challenge application in this report, as this was previously described in detail in Deliverable
3.1. Instead, we report the status of each fast-track application and subsequently the procedure for an
end user to instantiate their multiscale application using the ComPat technology as it currently stands,
using the fast-track application as examples. In the Annex we provide the specific configuration files

etc. required for the fast-track applications.

2.2 Description of fast-track applications and their requirements

2.2.1 Global turbulence application (Extreme Scaling)

The global turbulence application aims at simulating the evolution of temperature profiles in the plasma
core at transport time scales (seconds) while taking into account the influence of turbulence (micro
seconds), to predicting the performance of future fusion devices. Turbulence is calculated with a
gyrofluid turbulence model (3D) describing the plasma from a set of so-called flux tubes [4]. Heat fluxes
are then averaged in time and converted into transport coefficient for the transport code (1D) with regular
update of the plasma equilibrium (2D). All submodels are coupled together by means of a standardized
data structure through the MUSCLE?2 library [1-3] on the EEE (PSNC, LRZ). In addition, an adaptive
time stepping mechanism has been added to the transport solver, which allows us to limit evolution of
gradients to keep the turbulence model in a well-defined range. The multiscale model consists of a 3D
gyrofluid submodel (GEM), and two other codes (ETS for 1D transport, CHEASE for 2D equilibrium)
and one numerical tool (IMP4DV, to convert heat fluxes coming from the turbulence submodel into
coefficients taken into account by the transport submodel to evolve the temperature profiles). There are
also two mappers [1] (EQUIL) and (COREP), which are “fan-out™: i.e. they take the data outputted from
one submodel and communicate it to more than one model (three in both cases). The primary model
(highest computational cost) is GEM, while the other submodels are auxiliary models. The graphical
representation of the MML (gMML) for the global turbulence model is shown in Figure 1, created using
the JMML programme developed during the MAPPER project [3].
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Figure 1: gMML representation of the global turbulence application, showing the first iteration of the ETS
submodel. The models surrounded by an ellipse are submodels, those surrounded by hexagons are mappers,

while arrows correspond to data conduits (see Borgorff ef al. [1] for more details).

2.2.2 BAC application (Replica Exchange)

The aim of the Binding Affinity Calculator (BAC) is to calculate the strength of macromolecular binding
free energies using computationally based molecular modelling for applications in drug discovery and
personalized medicine [5]. The underlying computational method is based on classical molecular
dynamics (MD). These are coupled to the molecular mechanics Poisson—Boltzmann surface area
(MMPBSA) method to calculate binding free energies. In order to obtain statistically converged and
reproducible results, ensembles of MD calculations are performed with each simulation differing only

in their initial starting conditions. A typical BAC run for a single protein-ligand complex consists of a
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two-step workflow (MD-MMPBSA) performed for 25 independently initialized replicas. It used two
different codes (NAMD [6] and AmberTools [7]) which are coupled through the output files of NAMD
being read as input by AmberTools. This workflow requires the working directory to be persistent, with
the AmberTools submodel to be executed in the same directory as the NAMD submodel. These
requirements have been added to the QCG submission tools (see Deliverable 5.2). The gMML
representation of the BAC workflow is shown in Figure 2 for a single replica and with the replicas

explicitly represented.

end end

Figure 2: gMML single replica workflow for the BAC (left). There are n replicas created of this workflow;
this is explicitly represented in the gMML on the right.

2.2.3 Red Blood Cells (RBC) application (Extreme Scaling)

This fast-track application is a sandbox application to couple Palabos [8] (a fully parallelised open
source Lattice Boltzmann Model) with the Hemocell (called Ficsion in earlier reports) suspension
simulation framework (an Immersed Boundary Lattice Boltzmann Model (IB-LBM)) [9]. This coupling
is shown in Figure 3, demonstrating that the continuous fluid field represented in LBM is coupled to the
in- and outlets of the dense suspension fluid. Note that, the scientific scale bridging model is still missing
in this work, and is under development. Nevertheless, while the scale bridging algorithms are being
developed, we can already use the sandbox implementation to test all issues with respect to the ES

pattern. The sandbox application has been coupled using MUSCLE on EEE resources.
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Palabos Ficsion Palabos
Figure 3: An example of an ES application, a blood suspension model (Ficsion, the primary model) coupled

to two continuous blood flow models (auxiliary models, Palabos) that provide the inflow and outflow

conditions for the suspension model.

The gMML representation of the RBC is shown below in Figure 4.

Ficsion_(0,finit-O1)

Palabos_1

Ficsion_(0-1,S-0i)

Figure 4: gMML representation showing the first iteration of the RBC model. The primary model

(Ficsion/Hemocell) communicates with two auxiliary models (Palabos_1 and Palabos_2).

2.3 Progress in employing multiscale computing patterns in scientific
applications

In Deliverable 2.1, we made a major design decision for ComPat: The MCPs will be expressed on the
level of a task graph, generated from the XML format of MML (xMML) [1-3]. The xXMML description
is therefore the starting point of the instantiation for the end-user. The aim of ComPat is for control flow
tools to be directed by execution recipes created by the multiscale computing pattern software developed
in WP 2, starting from this XMML description of the application. In the following sections we will
describe the full chain of actions for an application to be instantiated as a computing pattern by the end-

user, using an XMML description as the starting point.
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The chain of actions for instantiating a multiscale simulation pattern as a MCP is as follows (referring

to Deliverable 2.2 for all the details of the software parts that are used):

1.

Ensure the submodels are correctly installed on the required EEE resources / compatible
with ComPat stack components on the EEE.

Describe the full multiscale simulation as an xMML description.

[Optional] Create an YaML input file specifying input files, submodel restrictions (available
environment modules, specific libraries, minimum or maximum number of cores, maximum
number of nodes, allowed resources, CPU / GPGPU cores etc). This currently also includes
the total number of cores for the whole multiscale simulation to be run on.

If submodel performance data is not available, the end-user must create the required
performance data (filling the “performance matrix”) by performing benchmark runs.

Use the “description part” of the WP 2 multiscale computing pattern software to combine
user-supplied input (if present) and the xMML description to create configuration files for
the multiscale simulation (matrix.xml and multiscale.xml); these are used as input (with the
performance data) for the WP 2 performance model software (see Deliverable 2.2, referred
to as the “optimisation part” of the multiscale computing pattern software). The end-user
can also enter simulation specific information by completing template matrix.xml and
multiscale.xml files (created by the description part of the multiscale computing pattern
software) if the user has not supplied a YaML file.

The “optimisation part” of the multiscale computing pattern software produces several
options with optimal performance for QCG to submit to EEE (see Deliverable 2.2).

The QCG-broker selects the most appropriate resource from those chosen by considering
the load on that machine (see Deliverable 5.2), referred to as the “services part” of the

multiscale computing pattern software.
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Table 1: Table showing the status of each application (fast and deep-track) with the instantiation steps.

Step 1 Step 2 Step3 | Step 4 Step 5 Step 6 | Step 7
Installed | xMML YaML | Performance | Multiscale | Input | Submission
on EEE | description | file data computing | to by QCG-
user- pattern QCG | Broker.
input software
Fast track applications (M12-18)
Global v 4 4 v v v
turbulence
RBC v v v v v v
BAC v v v v v v v
Deep track applications (M19-36)
HemeLB v v
ISR 4 v
AMUSE v
Astrophysics
Fusion v
Deep-track
BAC v
Deep-track

In Table 1, we show which steps are currently enabled for each of the three fast-track applications.

In step 5, the multiscale computing pattern software converts the xXMML description into an acyclic

directed (task) graph, and patterns in the graph are identified. The multiscale computing pattern software

combines this result with execution recipes specific for the pattern, performance models or data for the

single scale models and scale bridging algorithms, to determine the actual execution, which is specified

in configuration files for ComPat middleware. XMML has been described in Deliverable 2.1 (and

references therein). In the Annex 5.1 we show the XMML description for all three fast-track applications,

along with the associated task-graphs. Details of how the multiscale computing pattern software decides

on the best execution scenarios are described in Deliverable 2.2.

The essential feature of the XMML description is that it is a human readable text file that can easily be

written by the application user to describe the coupling topology of the multiscale application and to
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give information on the nature of each of the submodels. For example, in the xXMML description of the
BAC application, the “multiplicity” tag indicates that the Replica Computing should be invoked, with
the number of replicas corresponding to the “multiplicity” attribute. Currently, for the fast-track
applications, the user supplies the xXMML for their application, and the tools developed in WP2
automatically determine the corresponding MCP; however, we plan to provide xXMML templates to

assist the design of new multiscale simulations.

<instance id&="NAMD " submodel="NAMD " multiplicity="16"/>
<instance id="Amber" submodel="Amber" multiplicity="20"/>
<coupling from="NAMD.toAmber" to="Amber.toAmber"/>

Figure 5: The "multiplicity' tag in the xXMML description of the BAC, indicating that the replica computing
(RC) pattern will be invoked. This is recognised by the “translation” part of the multiscale computing

pattern software.

In Step 5, the multiscale computing pattern software requires information from the end user about both
the overall multiscale simulation (number of cores, restrictions etc.) and submodel specific information
(such as whether there is a restriction on the number cores, or type of nodes (GPU / CPU etc)). There
can be multiple instances of a submodel; for example, a submodel could be defined in the xMML
language as “Molecular Dynamics”, and the instance could be different molecular dynamics codes such
as LAMMPS or NAMD. The user must therefore specify which instance is required, along with any
restrictions that apply to that particular instance. An illustration is in the xXMML for the BAC application,
which although specifying NAMD, the actual code (instance) used is specified by the end user.

This distinction between “submodel” and “instance” is part of our desire that xXMML scripts provide
templates that can be reused for other multiscale simulations, or indeed that codes can be used in a plug-
and-play manner. In this manner, the topology and interaction between submodels are separated from
their implementation on the resources, allowing the details of the instance to be defined by the end-user,

without altering the xMML description of the multiscale application.

This information can be supplied in a variety of ways. The first way, currently implemented for the BAC
application, is in the form of a YaML file, which provides a compact, intuitive and human-readable data
format. The file is based upon the machines.yml file used by FabSim for the configuration settings of
submodels on remote resources [10]. Additional tags to indicate restrictions on the use of the code, etc
are included. An example of the user specified YaML files for the BAC application can be found in the
Annex 5.2. The software developed in WP2 takes the XMML file and the end-user supplied information,
and converts it into a form readable by the performance prediction software, developed in WP2. This
consists of two files: matrix.xml, which specifies submodel information, and multiscale.xml, which

specifies the coupling between the submodels. The multiscale computing pattern software can produce
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template matrix.xml and multiscale.xml files direct from the xXMML description of the application if no
information is supplied by the user when the multiscale computing pattern software is executed. This is
therefore the second option for the user to supply the required information; the template files can be
completed by the user when all the information is available and this can be used as input to the next
stage of the multiscale computing pattern software. Examples of matrix.xml and multiscale.xml for the

fast-track applications is given in Deliverable 2.2.

If the application uses the MUSCLE coupling environment (such as the transport-turbulence and RBC
application), the developer specifies MUSCLE either in the YaML file (to be developed) or in
matrix.xml / multiscale.xml (current implementation). To assist the end-user when using the MUSCLE
coupling environment, the software developed in WP2 creates a template cxa configuration file for
MUSCLE from the XMML description of the multiscale model. This template is then completed by the

end user. An example of a template cxa file is supplied in Annex 5.4.

For the performance service to work, it requires performance data for each submodel on different
resources / types of computational nodes. A description of how nodes-types are defined is given in
Deliverable 2.2. In the next reporting period, using the performance data collection tools developed in
WP4, we will develop methods to automatically generate this data. This is the focus of Task 3.3 (M19-
M36) “Task 3.3: Profiling and performance measurement”. Deliverable 4.2 reports on the current status
of the performance analysis tools to be used in ComPat with the fast-track applications. We envisage
this being possible in two ways: either by use of a benchmark flag when invoking the performance
service, which submits a ready-made benchmark file for a submodel of which timings are scaled to give
estimates of runtime behaviour, or via monitoring of previous full multiscale simulations. Performance
data is currently collected for the global turbulence application using the tools developed in WP 4
(Deliverable 4.2). We will shortly be developing methods for this data to be transferred to a location
where it can be accessed by the performance modelling part of the multiscale computing pattern
software. However, in the current instantiations of fast-track applications, the performance data is
supplied by the end-user in the YaML configuration file, or manually entered into matrix.xml. Examples
of the performance data we have collected for the fast track application is given in Deliverable 2.2. Note
that the end-user does not need to define a primary or auxiliary model in a ES pattern in the information
supplied to the multiscale computing pattern software; it is automatically determined by the multiscale

computing pattern software from the topology and the performance data.

The outputs of the performance service are configuration files and execution scripts for QCG-Broker.
These configuration scripts give several options for the multiscale simulations, which are decided by the
multiscale computing pattern software to be have the highest performance. Currently performance is

defined as a combination of time to solution and parallel efficiency, although in the future this will
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include other factors, such as energy consumption. The QCG configuration files are then submitted,
with the QCG-Broker deciding on the resource on to submit the multiscale simulation to. In the case of
the BAC (replica computing pattern), the QCG-Broker can send replicas to be run over multiple

resources if there is a limit in the number of jobs that can be concurrently run on the selected resource.

3 Plans for phase 2 (M18-M36) of the project

In the previous section, we have detailed the instantiation of the fast-track applications. The deep-track
applications will be the focus for M18-36, especially those in the Heterogeneous Multiscale Computing
(HMC) pattern, which requires a Heterogeneous Multiscale Manager (HMM) manager and/or an on-
the-fly database to orchestrate the pattern.

The deep-track applications have been described in Deliverable 3.1. In the following we give an update

and the plans for the next reporting period:

e Nanomaterials (HMC pattern)

Within the realm of nanomaterials, we are currently developing the scientific coupling between atomistic
and finite-element simulations. This will allow us to simulate nano-composite materials up to
macroscopic length and time scales. It requires the finite-element simulations to be parameterized by
atomistic simulations as and when they are required (through the polling of a database of parameters).
This will be a test-case for the HMC pattern, as the number of atomistic simulations will be unknown
until execution time (i.e. dynamic). We envisage the finite-element code will be paused or check-pointed
when the atomistic simulations are created, allowing the scheduling and submission of the atomistic

simulations to be determined by the multiscale computing pattern software.

e Astrophysics (ES / HMC pattern)

The Astrophysical simulations performed in the ComPat project by project partners at University of
Leiden are currently coupled using the AMUSE coupling library, which has been demonstrated to
efficiently couple up to 7 different submodels [11]. The astrophysics application therefore is a test-case
for the QCG tools to use coupling libraries other than MUSCLE. Work has commenced on executing
AMUSE applications on the EEE during the current reporting period. We can currently submit AMUSE
jobs on the PSNC machines using the QCG submission tools (WP4). The multiscale simulations that
utilize AMUSE use MPI_comm_spawn to create new MPI processes when required by the coupled
codes. This means the number of MPI processes is not known at start up. It is therefore a challenge for
a performance model to predict this behaviour; there are additional difficulties in scheduling such a
setup on a HPC resource when a dynamic number of instances are required, within iterations of running
submodels (normally called using MPI comm_spawn). The Astrophysics applications using AMUSE

will therefore be a test of our scheduling / coordination tools.
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e Aneurysm Flow Dynamics (RC / ES pattern)

Computational Fluid Dynamics (CFD) has been proposed as a tool for informing clinical treatment
decisions for aneurysms. We use the Lattice Boltzmann code HemeLB [12], and in the upcoming period
we will focus on the introduction of flow diverters within blood vessels to explore the long range effects
of their introduction, such as likely candidate sites for new aneurysm formation. This will involve the
running of many replicas to deal with uncertainties in medical input data, and to span the physiological
range of heart rates in the patient post-intervention. This work would be difficult to schedule efficiently
without the ComPat tools being developed for the RC pattern. We also plan to use the ES pattern, with
HemeLB as the primary model simulating the stresses of the blood flow on the inserted stent, coupled
to the ‘stent builder’ (developed during this project) as the auxiliary model, modifying the shape of the
stent. The efficient running of a stent deployment simulation greatly benefits from use of the ComPat
tools, particularly due to the very different computational requirements of the primary and auxiliary

models in this case, and naturally fits into the ComPat paradigm.

e In-Stent Restenosis (ES / RC)

Restenosis is governed by several interconnected processes, and the model developed by ITMO studies
the cell growth in the vessel wall, drug diffusion from the stent struts and the effects of the surrounding
geometry and blood flow on its cell growth. In Deliverable 3.1 we have described in some detail our
model and its application as an Extreme Scaling HPMC pattern.

This model contains a multitude of parameters, most of which are selected based on experimental data.
To study the sensitivity of the growth process on these parameters, we have performed a simulation in
spirit of the Replica Computing pattern. We have not yet actually used RC pattern services as described
in Deliverable 2.2, this we will do in Phase 2 of the project. More details about the in-stent restenosis is

given in Annex 5.5.

e Ligand — Drug Binding Affinities (RC / HMC)

The BAC has been used as a fast-track application, but it is part of our future plans that we extend the
BAC methodology to a range of new use-cases and create more complicated workflows. We envisage
re-simulation and chemical modification of promising drug candidates, which will require multiscale
coupling to quantum simulations for ligand parameterization. We have identified ChemShell [13] as a
promising candidate code for quantum simulation and is hosted at the ComPat partner STFC. ChemShell
has also tested for integration with the profiling tools described in Deliverable 4.2. This will be an
example of the HMC pattern, with the possibility of two different databases: for the parameterisation of

the classical molecular dynamics atoms and for the chemical modification itself.
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e Global Turbulence application

In the context of deep-track applications, very minimalistic runs with a gyrokinetic turbulence model
(5D) have been demonstrated with a fluxtube local code implemented as a single program (still
following the ES pattern and implemented in MUSCLE?2). The next steps, after linking to the pattern
services and the new QCG, will be dedicated to bring deep-track applications to production. This will
consist of modifying the fluxtube code implementation to run fluxtubes independently as several
instances of the program, in order to fit in with the HMC pattern (we understand what are the required
changes, if no issues are discovered we should be able to have a first prototype ready in a few weeks).
The other parallel task is to complete the addition of the global gyrokinetic code into our MUSCLE2
framework (a prototype is almost ready but we foresee more testing/debugging then). Finally, to be able
to run these deep-track application on resolutions where it makes sense, substantial computing

allocations should be purchased (on and outside EEE).

4 Conclusions

In the document, we report on the successful instantiation of the Extreme Scaling and Replica
Computing patterns using fast-track applications on the EEE, and describe the chain of actions required
by the end-user to achieve this. It provides a snapshot of current progress in Task 3.2: “Instantiation and
validation of multiscale computing patterns (M12-M24)” and offers a guide for instantiation new

applications.

Combined with Deliverable 2.2, we have detailed the process of transforming an application from an
abstract description at the level of xXMML / task graph into configuration files / execution recipes with

optimal performance.

The division into fast-track and deep-track applications has allowed us to develop and refine not only
the ComPat infrastructure and technology efficiently. For example, as described in Deliverable 5.2, we
can now run replicas in the RC pattern over multiple resources. It has also allowed us to consider new
and novel multiscale scenarios for grand challenge applications (for deep-track applications) and
develop the scientific advances required. In this document, we describe how we envisage the

developments and instantiations of the deep-track applications.

Alongside instantiating the deep-track applications, the next reporting period will involve collaborations
with WP2 to refine the multiscale computing pattern software, including automating the performance
data collection (with WP4), and testing different metrics within the performance model (such as energy

consumption).
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5 Annexes

5.1 xMML descriptions and task graphs

The xXMML description for all three fast-track applications, along with the associated task-graphs
(created wusing the jMML programme developed during the MAPPER project
https://github.com/blootsvoets/jmml/ ).

1. Global turbulence:

<?xml version='1.0' encoding='"UTF-8'7>
<model id="TTE" name="turbulence-transport-equilibrium workflow" xmml version="0.4" xmlns="http://www.mapper-
project.eu/xmml">
<!--
xMML description of Fusion coupled application composed of
turbulence-transport-equilibrium submodels.
@version: 0.2
@author: olivier.hoenen@ipp.mpg.de
>
<description>
The application simulates the time evolution of electron and ion
temperature profiles (macro) in the core of the plasma and the effects
of turbulence at micro scales. The application consists of 3 submodels
(transport, equilibrium and turbulence) and one numerical tool (to convert
heat fluxes coming from the turbulence submodel into coefficients taken
into account by the transport submodel to evolve the temperature profiles).
The turbulence code (GEM, 3D gyrofluid fluxtube approximation) is our
primary submodel and all other codes (ETS for 1D transport, CHEASE for
2D equilibrium and imp4dv to convert fluxes) are auxiliaries in this
extreme scaling scenario.
</description>

<definitions>

<mapper id="dupEquil" type="fan-out">
<ports>

<in id="equilibrium_in" />

<out id="equilibrium_out1"/>

<out id="equilibrium_out2"/>

<out id="equilibrium_out3"/>
</ports>

</mapper>

<mapper id="dupCorep" type="fan-out">
<ports>

<in id="coreprof in"/>

<out id="coreprof outl"/>

<out id="coreprof out2"/>

<out id="coreprof out3"/>
</ports>

</mapper>

<submodel id="init">
<timescale delta="0" total="0"/>
<spacescale delta="0" total="0"/>
<ports>

<out id="inputCPOs" operator="0f"/>
</ports>

</submodel>

<submodel id="transp">
<timescale delta="1E-0" total="1E+1"/>
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<spacescale delta="1E-2" total="1E+1"/>
<ports>

<in id="inputCPOs" operator=""finit"/>

<in id="coreprof in" operator="S"/>

<in id="coretransp_in" operator="S"/>

<in id="equilibrium_in" operator="S"/>

<out id="coreprof out" operator="0i1"/>

<out id="equilibrium_out" operator="0i"/>
</ports>

</submodel>

<submodel id="turb" stateful="yes">
<timescale delta="1E-6" total="1E-4"/>
<spacescale delta="1E-3" total="1E-2"/>
<ports>

<in id="coreprof in" operator="finit"/>

<in id="equilibrium_in" operator="finit"/>

<out id="coretransp_out" operator="0Of"/>
</ports>

</submodel>

<submodel id="equil">
<timescale delta="0" total="0"/>
<ports>
<in id="equilibrium_in" operator="finit"/>
<out id="equilibrium_out" operator="0f"/>
</ports>
</submodel>

<submodel id="f2dv">
<timescale delta="0" total="0"/>
<ports>
<in id="coreprof in" operator="finit"/>
<in id="equilibrium_in" operator="finit"/>
<in id="coretransp_in" operator="finit"/>
<out id="coretransp_out" operator="0f"/>
</ports>
</submodel>

</definitions>

<topology>
<instance id="CONTINUE" submodel="init"/>
<instance id="ETS" submodel="transp"/>
<instance id="GEM" submodel="turb"/>
<instance id="CHEASE" submodel="equil"/>
<instance id="EQUILx3" mapper="dupEquil"/>
<instance id="COREPx3" mapper="dupCorep"/>
<instance id="IMP4DV" submodel="f2dv"/>

<coupling from="CONTINUE.inputCPOs" to="ETS.inputCPOs"/>

<coupling from="ETS.coreprof out" to="COREPx3.coreprof in"/>
<coupling from="ETS.equilibrium_out" to="CHEASE.equilibrium_in"/>

<coupling from="COREPx3.coreprof outl" to="GEM.coreprof in"/>
<coupling from="COREPx3.coreprof out2" to="IMP4DV.coreprof in"/>
<coupling from="COREPx3.coreprof out3" to="ETS.coreprof in"/>
<coupling from="CHEASE .equilibrium_out" to="EQUILx3.equilibrium_in"/>
<coupling from="EQUILx3.equilibrium_outl" to="GEM.equilibrium_in"/>
<coupling from="EQUILx3.equilibrium_out2" to="IMP4DV.equilibrium_in"/>
<coupling from="EQUILx3.equilibrium_out3" to="ETS.equilibrium_in"/>

<coupling from="GEM.coretransp_out" to="IMP4DV .coretransp_in"/>
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<coupling from="IMP4DV .coretransp out" to="ETS.coretransp_in"/>
</topology>

</model>

P T

ETS(1-2,S-01)

2. BAC:

<?xml version="1.0"7>
<model id="BAC" name="BAC model" version="1.0" xmml_version="0.4" xmlns="http://www.mapper-project.eu/xmml">
<description>
BAC- 16 replicas, specified using the “multiplicity” attribute. Each replica contains a workflow of NAMD simulation -> Amber
simulation
</description>

<definitions>

<submodel id="NAMD " name="NAMD ">
<timescale delta="1E-6" total="1E-4"/>
<spacescale delta="1E-3" total="1E-2"/>
<ports>
<out id="toAmber" operator="0f" />
</ports>
</submodel>
<submodel id="Amber" name="Amber" >
<timescale delta="1E-6" total="1E-4"/>
<spacescale delta="1E-3" total="1E-2"/>
<ports>
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<in id="toAmber" operator=""finit" />
</ports>
</submodel>
</definitions>

<topology>
<instance id="NAMD " submodel="NAMD " multiplicity="16"/>
<instance id="Amber" submodel="Amber" multiplicity="20"/>
<coupling from="NAMD.toAmber" to="Amber.toAmber"/>

</topology>

</model>
3. RBC - Sandbox:
<l--

xMML description of ISR coupled application composed of 3 models.
@version: 0.1
@author: Saad Alowayyed

->
<model id="SandBox" name="SandBox Application" xmml_version="0.4" xmlns="http://www.mapper-project.eu/xmml">
<description>
The sandbox simulates couples Palabos with Ficsion.
</description>

<definitions>

<submodel id="Init">
<timescale delta="0" total="0"/>
<spacescale delta="0" total="0"/>
<ports>

<out id="Init2]large" operator="Of"/>
</ports>

</submodel>

<submodel id="large">
<timescale delta="1E-0" total="1E+1"/>
<spacescale delta="1E-2" total="1E+1"/>
<ports>

<in id="Init2large" operator="finit"/>

<out id="largeO1" operator="0i"/>

<in id="largeS" operator="S"/>
</ports>

</submodel>

<submodel id="smalll" stateful="yes">
<timescale delta="1E-6" total="1E-4"/>
<spacescale delta="1E-3" total="1E-2"/>
<ports>

<in id="smalllfinit" operator="finit"/>

<out id="small1Of" operator="0f"/>
</ports>

</submodel>

<submodel id="small2" stateful="yes">
<timescale delta="1E-6" total="1E-4"/>
<spacescale delta="1E-3" total="1E-2"/>
<ports>

<in id="small2finit" operator="finit"/>

<out id="small20f" operator="0f"/>
</ports>

</submodel>

</definitions>

<topology>
<instance id="Init" submodel="Init"/>
<instance id="large" submodel="large"/>
<instance id="smalll" submodel="smalll"/>
<instance id="small2" submodel="small2"/>
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<coupling from="Init.Init2large" to="large.Init2large"/>
<coupling from="large.largeO1" to="small2.small2finit"/>
<coupling from="large.largeO1" to="smalll.smalllfinit"/>
<coupling from="smalll.small1Of" to="large.largeS"/>
<coupling from="small2.small20f" to="large.largeS"/>

</topology>

</model>

5.2 YaML files for the BAC application

production:
local configs: "/net/dirac/mnt/store6/dave/janssen/out-stage/"
model: "NAMD"
name : namd
file type: URL
benchmark scaling: 1
iterations_scaling: 1
dependencies: namd
restrictions:
cpu:
min: 1
max: 512
execution:
arguments:
script:
"cd input/mineq_confs\n
namd_exec eq0-rep${PS_rep}.conf > ../replicas/rep${PS _rep}/equilibration/eq0.log\n
namd_exec eql-rep${PS _rep}.conf > ../replicas/rep${PS _rep}/equilibration/eql.log\n
namd_exec eq2-rep${PS _rep}.conf > ../replicas/rep${PS _rep}/equilibration/eq2.log\n
cd ../../sim_confs\n
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namd_exec sim1-rep${PS_rep}.conf > ../../input/replicas/rep${PS_rep}/simulation/sim${PS rep}.log"
value: text
production2:
local results: "~/work/fabsim/FabSim/results"
model: "Amber"
name: mmpbsa
restrictions:
cpu:
min: 1
max: 1
number: 1
dependencies: amber
execution:
arguments:
script:
"cd rep${PS_rep}/fe-calc
mpirun -n ${QCG_PROCS} MMPBSA.py.MPI -i ././nmode.in -sp ../../build/complex.top -cp ../../build/com.top -rp
../../ouild/rec.top -lp ../../build/lig.top -y ../simulation/sim1.dc/ > amber.log"

5.3 Matrix.xml and Multiscale.xml

Note, templates for matrix.xml and multiscale.xml are also reported in Deliverable 2.2
1. Fusion application:

Matrix.xml:

<singlescale>
<submodels>
<submodel name="init" class="NativeKernel">
<instance name="CONTINUE">
<restrictions>
<cpu number="1"/>
</restrictions>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>
</available resources>

</instance>
</submodel>

<submodel name="f2dv" class="NativeKernel">
<instance name="IMP4DV">
<restrictions>
<restrictions>
<cpu number="1"/>
</restrictions>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>
</available resources>

</instance>
</submodel>

<submodel name="dupEquil" class="DuplicationMapper">
<instance name="EQUILx3">
<restrictions>
<restrictions>
<cpu number="1"/>
</restrictions>

<available resources>
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<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>

</available resources>

</instance>
</submodel>

<submodel name="dupCorep" class="DuplicationMapper">
<instance name="COREPx3">
<restrictions>
<restrictions>
<cpu number="1"/>
</restrictions>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>
</available resources>

</instance>
</submodel>

<submodel name="transp" class="NativeKernel">
<instance name="ETS">
<restrictions>
<cpu>
<number> 1 </number>
<min_cores> 1 </min_cores>
<max_cores> | </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://input_to ETS.xml</file>
<iterations> 1000 </iterations>
</benchmark_input>
<scalability formula> NY </scalability formula>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>
</available resources>

</instance>
</submodel>

<submodel name="equil" class="NativeKernel">
<instance name="CHEASE">
<restrictions>
<cpu>
<number> 1 </number>
<min_cores> 1 </min_cores>
<max_cores> | </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://input_to CHEASE.xml</file>
<iterations> 1000 </iterations>

</benchmark_input>

<scalability formula> NY </scalability formula>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>
</available resources>
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</instance>
</submodel>

<submodel name="turb" class="MPIKernel">
<instance name="GEM">
<restrictions>
<cpu>
<number> (2x)*k:k=8 </number>
<min_cores> 64 </min_cores>
<max_cores> 2048 </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://input_to GEM.xml</file>
<iterations> 1000 </iterations>

</benchmark_input>

<scalability formula> NY </scalability formula>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="eagle" nodeType="haswell 128"/>
</available resources>

</instance>
</submodel>

<performance>
<submodel name="transp">
<instance name="ETS">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores> 1</numberOfCores>
<wallClockTime> 1.3</wallClockTime>
<numberOfNodes> 0 </numberOfNodes> <!-- because it is a helper -->

</resources>

<resources name="eagle">
<nodeType> haswell 128 </nodeType>
<numberOfCores> 1 </numberOfCores>
<wallClockTime> 1.0 </wallClockTime>
<numberOfNodes> 0 </numberOfNodes>
</resources>

</instance>
</submodel>

<submodel name="equil">
<instance name="CHEASE">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores> 1 </numberOfCores>
<wallClockTime> 3.9 </wallClockTime>
<numberOfNodes> 0 </numberOfNodes>

</resources>
<resources name="eagle">
<nodeType> haswell 128 </nodeType>
<numberOfCores> 1 </numberOfCores>
<wallClockTime> 2.6 </wallClockTime>
<numberOfNodes> 0 </numberOfNodes>
</resources>

</instance>
</submodel>
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<submodel name="turb">
<instance name="GEM">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores> 64;128;256;512;1024;2048</numberOfCores>
<wallClockTime> 767.9; 408.5; 197.2; 93.7; 45.2; 32.4</wallClockTime>

<numberOfNodes> 4;8;16;32;64;128</numberOfNodes>

</resources>
<resources name="eagle">
<numberOfCores> 64;128;256;512;1024;2048</numberOfCores>
<wallClockTime> 863; 517; 255; 85; 44; 34</wallClockTime>
<numberOfNodes> 3;5;10;19;37;74</numberOfNodes>
</resources>

</instance>
</submodel>

</performance>
</singlescale>

multiscale.xml

<multiscale>
<info>
<job appID="compat-test" project="compat">
<computing> ES </computing>
<modeltime> ETS + CHEASE + GEM </modeltime>
<task persistent="true" taskld="ES-task-1">

<numberofcores>
<min> 64 </min>
<max> 2048 </max>
</mumberofcores>
</task>
</job>
</info>

<topology>

<instance id="CONTINUE" helper="init"/>
<instance id="ETS"  helper="transp"/>
<instance id="GEM"  submodel="turb"/>
<instance id="CHEASE" helper="equil"/>
<instance id="EQUILx3" helper="dupEquil"/>
<instance id="COREPx3" helper="dupCorep"/>
<instance id="IMP4DV" helper="f2dv"/>

<coupling from="CONTINUE" to="ETS"/>

<coupling from="ETS"  to="COREPx3"/>
<coupling from="ETS"  to="CHEASE"/>

<coupling from="COREPx3" to="GEM"/>
<coupling from="COREPx3" to="IMP4DV"/>
<coupling from="COREPx3" to="ETS"/>
<coupling from="CHEASE" to="EQUILx3"/>
<coupling from="EQUILx3" to="GEM"/>
<coupling from="EQUILx3" to="IMP4DV"/>
<coupling from="EQUILx3" to="ETS"/>

<coupling from="GEM"  to="IMP4DV"/>
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<coupling from="IMP4DV" to="ETS"/>

</topology>

<middleware name="QCG">

<execution type="compat">

<executable>
<application
</executable>

<arguments>

—n

name="muscle2" version="compat-1.2"/>

<value>short.cxa.rb</value>

</arguments>

<stdout>
<directory>
<location
test/results</location>
</directory>
</stdout>

<stderr>
<directory>
<location
test/results</location>
</directory>
</stderr>

<stageInOut>

<file name="test.cxa.rb"

<location

test/test.cxa.rb</location>

</file>

<file name="inputs.tgz" type

<location

test/inputs.tgz</location>

</file>

<file name="extract_inputs.sh"

<location
test/extract_inputs.sh</I
</file>

type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-

type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-

—"n;

type="1n
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-

"

—"n;

i
type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-

n">

—"n;

type="1n

type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-
ocation>

"

<directory name="outputs" type="out">

<location
test/results</location>
</directory>
</stageInOut>

<environment>

type="URL">gsiftp://qcg.man.poznan.pl//home/plgrid-groups/plggcompat/Fusion/FastTrack/qcg-

<variable name="QCG_MODULES LIST">compat/app/fusion</variable>
<variable name="QCG_PREPROCESS">extract_inputs.sh</variable>

</environment>

</execution>
</middleware>
</multiscale>

2. BAC
Matrix.xml:
<singlescale>
<submodels>
<submodel name
<instance name=

-]

namd_kernel" class="MPIKernel">
llnamd">
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<restrictions>
<cpu>
<number> NA </number>
<min_cores> 1 </min_cores>
<max_cores> 2048 </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://qcg.man.poznan.pl:~/bac/input</file>
<script>
<I[CDATA[ cd input/mineq_confs
qcg_app namd eq0-benchmark.conf
../replicas/rep0/equilibration/eq0.log
1>
</script>
<iterations> 100 </iterations>
</benchmark_input>
<scalability formula> NA </scalability formula>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="supermuc" nodeType="fat"/>
<resource name="supermuc" nodeType="haswell"/>
</available resources>

</instance>
</submodel>

<submodel name="amber_kernel" class="MPIKernel">
<instance name="amber">
<restrictions>
<cpu>
<number> 1 </number>
<min_cores> 1 </min_cores>
<max_cores> | </max_cores>
</cpu>
</restrictions>

<benchmark input>
</benchmark_input>
<scalability formula> NA </scalability formula>

<available resources>
<resource name="supermuc" nodeType="thin"/>
<resource name="supermuc" nodeType="fat"/>
<resource name="supermuc" nodeType="haswell"/>

</available resources>

</instance>
</submodel>

</submodels>

<performance>
<submodel name="namd">
<instance name="namd">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores>
1;2;4:8;16;32;64;128;256;512;1024;2048</numberOfCores>
<wallClockTime>
2265408;1187136;606528;290304;150336;77760;42508.8;21254.4;12960,7257.6;7776;8294.4</wallClockTime>
<numberOfNodes> 1;1;1;1;1;2;4;8;16;32;64;128</numberOfNodes>

<nodeType> fat </nodeType>
<numberOfCores> 1;2;4;8;16;32;40;80;160;320;640;1280</numberOfCores>
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<wallClockTime>
2336947.2;1164844.8;583718.4;,297043.2;153446.4;88128;71539.2;38880,20736;13478.4;10886.4,13996.8</wallClock Time
>

<numberOfNodes> 1;1;1;1;1;1;1;2;4;8;16;32</numberOfNodes>

<nodeType> haswell </nodeType>
<numberOfCores> 1;2;4;8;16;28;56;112;224;448</numberOfCores>
<wallClockTime>
2105222.4;1071532.8;539136;274752;141523.2;83462.4;42508.8;23328;12960,7257.6</wallClock Time>
<numberOfNodes> 1;1;1;1;1;1;2;4;8;16</numberOfNodes>

</resources>
</instance>
</submodel>

<submodel name="amber">
<instance name="amber">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores> 1 </numberOfCores>
<wallClockTime> 1200 </wallClockTime>
<numberOfNodes> 1 </numberOfNodes>

<nodeType> fat </nodeType>

<numberOfCores> 1 </numberOfCores>
<wallClockTime> 1200 </wallClockTime>
<numberOfNodes> 1 </numberOfNodes>

<nodeType> haswell </nodeType>
<numberOfCores> 1 </numberOfCores>

<wallClockTime> 1200 </wallClockTime>
<numberOfNodes> 1 </numberOfNodes>

</resources>

</instance>
</submodel>
</performance>
</singlescale>

Multiscale.xml

<multiscale>
<info>
<job appID="bac-compat" project="compat">
<computing> RC </computing>
<modeltime> </modeltime>

<task taskld="namd" persistent="true">
<numberofcores>
<min> 1 </min>
<max> 1024 </max>
</mumberofcores>
</task>

<task taskld="amber" extension="namd_PSit${PS it}">
<numberofcores>
<min> 1 </min>
<max> 1 </max>
</mumberofcores>
</task>

</job>
</info>

<topology>
<instance id="namd" submodel="namd"/>
<instance id="amber" submodel="amber"/>
</topology>
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<application name="bash"/>

</executable>
<arguments>

<value>bac-namd.sh</value>
<value>${PS_rep}</value>

</arguments>
<stageInOut>
<file name="bac-namd.sh" type="in">
<location  type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/muc-
bac-namd.sh</location>
</file>
<directory name="input" type="in">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/input</location>
</directory>
<file name="qcg.debug" type="out">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/output/output-muc-$ {JOB_ID}-namd-rep${PS_rep}.qcg.debug</location>
</file>
<file name="_stdouterr" type="out">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/output/output-muc-$ {JOB_ID}-namd-rep${PS_rep}.stdouterr</location>
</file>
</stageInOut>

</execution>

<executionTime useReservation="false">
<!-- walltime 1h for this task -->
<executionDuration>P0YOMODT3HOM</executionDuration>

</executionTime>
<parametersSweep>

<!-- this task will be replicated (parametrized) according to the 'rep' parameter

(in this case 2 times) -->

<parameter>
<name>rep</name>
<value>
<loop>
<start>1</start>
<end>2</end>
<step>1</step>
<decimalPlaces>0</decimalPlaces>
</loop>
</value>
</parameter>
</parametersSweep>

</task>

<task taskld="amber">
<requirements>

<resourceRequirements>
<computingResource>

<hostParameter name="queue">
<stringValue value="test"/>
</hostParameter>

</computingResource>
</resourceRequirements>

<patternTopology>

<kernels>

<kernel id="amber kernel"/>

</kernels>

<classes>
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<class id="c1">
<node host="supermuc">thin</node>

</class>
</classes>
<plans>
<plan id="plan1">
<criteria>
<time>POYOMODT3HOM</time>
</criteria>
<group>
<kernel refid="amber kernel">
<class refid="c1">
<cores>2</cores>
</class>
</kernel>
</group>
</plan>
</plans>
</patternTopology>
</requirements>
<execution type="compat">
<executable>
<application name="bash"/>
</executable>
<arguments>
<value>bac-amber.sh</value>
<value>${PS_rep}</value>
</arguments>
<stageInOut>

<file name="bac-amber.sh" type="in">
<location  type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-xml/muc-
bac-amber.sh</location>

</file>
<directory name="input/replicas/rep$ {PS_rep}" type="out">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/output/output-muc-$ {JOB_ID}-rep${PS_rep}</location>
</directory>
<file name="qcg.debug" type="out">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/output/output-muc-$ {JOB_ID}-amber-rep$ {PS_rep}.qcg.debug</location>
</file>
<file name="amber.log" type="out">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/output/output-muc-$ {JOB_ID}-amber-rep$ {PS_rep}.log</location>
</file>
<file name="_stdouterr" type="out">
<location type="URL">gsiftp://qcg.man.poznan.pl/compat/bac-
xml/output/output-muc-$ {JOB_ID}-amber-rep$ {PS_rep}.stdouterr</location>
</file>
</stageInOut>

</execution>
<executionTime useReservation="false">
<executionDuration>P0YOMODT3HOM</executionDuration>
</executionTime>
<workflow>
<l-- the 'amber' task will start after 'namd' successfully finish;
each 'amber' parameter sweep task is started after coresponding 'namd'
task (‘rep' variable) -->
<parent triggerState="FINISHED">namd_PSit$ {PS_it}</parent>

</workflow>
<parametersSweep>
<parameter>
<name>it</name>
<value>
<loop>
<start>0</start>
<end>1</end>
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<step>1</step>
<decimalPlaces>0</decimalPlaces>
</loop>
</value>
</parameter>
<parameter>
<name>rep</name>
<value>
<loop>
<start>1</start>
<end>2</end>
<step>1</step>
<decimalPlaces>0</decimalPlaces>
</loop>
</value>
</parameter>
</parametersSweep>

</task>

</middleware>
</multiscale>

3. Red Blood Cells (SandBox)

Matrix.xml:

<singlescale>
<submodels>
<submodel name="large" class="MPIKernel">
<instance name="large">
<restrictions>
<cpu>
<number> x"2 </number>
<min_cores> 1 </min_cores>
<max_cores> 1024 </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://config_large.xml</file>
<iterations> 30 </iterations>

</benchmark_input>

<scalability formula> x=2n </scalability formula>

<available resources>
<resource name="supermuc" nodetype="thin"/>
<resource name="supermuc" nodetype="fat"/>
—n" " —" "
<resource name="eagle" nodetype="haswell 128"/>

</available resources>

</instance>
</submodel>

<submodel name="smalll" class="MPIKernel">
<instance name="small1">
<restrictions>
<cpu>
<number> x"2 </number>
<min_cores> 1 </min_cores>
<max_cores> 128 </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://config_smalll.xml</file>
<iterations> 30 </iterations>

</benchmark_input>
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<scalability formula> x=2n </scalability formula>

<available resources>
<resource name="supermuc" nodetype="thin"/>
<resource name="supermuc" nodetype="fat"/>

— n — 1" n

<resource name="eagle" nodetype="haswell 128"/>

</available resources>

</instance>
</submodel>

<submodel name="small2" class="MPIKernel">
<instance name="small2">
<restrictions>
<cpu>
<number> x"2 </number>
<min_cores> 1 </min_cores>
<max_cores> 128 </max_cores>
</cpu>
</restrictions>

<benchmark input>
<file type="URL">gsiftp://config_small2.xml</file>
<iterations> 30 </iterations>

</benchmark_input>

<scalability formula> x=2n </scalability formula>

<available resources>
<resource name="supermuc" nodetype="thin"/>
<resource name="supermuc" nodetype="fat"/>
<resource name="eagle" nodetype="huawei 128"/>

</available resources>

</instance>
</submodel>

</submodels>

<performance>
<submodel name="large">
<instance name="large">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores> 1;2;4;8;16;32;64;128;256;512;1024</numberOfCores>
<wallClockTime>
30565.2;19289.4;11043.5;6990.88;4080.57;2816.754;1719.19;1013.66,760.079,643.465;572.58 1</wallClock Time>

<numberOfNodes> 1;1;1;1;1;2;4;8;16;32;64</numberOfNodes>

<nodeType> fat </nodeType>
<numberOfCores> 1;2;4;8;16;32;64;128;256;512;1024</numberOfCores>
<wallClockTime>
30565.2;19289.4;11043.5;6990.88;4442.67;4051.89;2798.78;1758.49;1509.41;1397.31;1280.1</wallClock Time>
<numberOfNodes> 1;1;1;1;1;1;2;4,7;13;26</numberOfNodes>
</resources>
<resources name="eagle">
<numberOfCores> 1;2;4;8;16;32;64;128;256;512;1024</numberOfCores>
<wallClockTime>
32840.4;11566.5;27399.93;15593.55,3485.49;2262.52;1370.95;1194.03;977.379,723.304,;484.175</wallClockTime>
<numberOfNodes> 1;1;1;1;1;2;3;5;10;19;37</numberOfNodes>
</resources>

</instance>
</submodel>

[D3.2 Report on Instantiating Computing Patterns for HPMC Applications] Page 34 of 40



ComPat - 671564

<submodel name="smalll">
<instance name="small1">
<resources name="supermuc">
<nodeType> thin </nodeType>
<numberOfCores> 1;2;4;8;16;32;64;128</numberOfCores>
<wallClockTime>
622.303;367.12;326.559;255.832;241.497;179.632;132.234;114.808 </wallClockTime>
<numberOfNodes> 1;1;1;1;1;2;4;8</numberOfNodes>

<nodeType> fat </nodeType>
<numberOfCores> 1;2;4;8;16;32;64;128</numberOfCores>
<wallClockTime> 649.852;484.22;370.641;258.458;205.878,270.77,247.144,200.654</wallClock Time>
<numberOfNodes> 1;1;1;1;1;1;2;4</numberOfNodes>
</resources>
<resources name="eagle">
<numberOfCores> 1;2;4;8;16;32;64;128</numberOfCores>
<wallClockTime> 524.020;932.215;877.707;319.447;193.384;203.176;190.204;170.430</wallClock Time>
<numberOfNodes> 1;1;1;1;1;2;3;5</numberOfNodes>
</resources>

</instance>
</submodel>

<submodel name="small2">
<instance name="small2">
<resources name="supermuc">
<nodeType> thin </nodeType>

<numberOfCores> 1;2;4;8;16;32;64;128</numberOfCores>
<wallClockTime> 572.104

368.71;328.52;259.108;242.092;180.597;133.321;115.15 </wallClock Time>
<numberOfNodes> 1;1;1;1;1;2;4;8</numberOfNodes>

<nodeType> fat </nodeType>
<numberOfCores> 1;2;4;8;16;32;64;128</numberOfCores>
<wallClockTime> 700.051;482.63;368.68;255.182;205.283;269.805;246.057;200.312 </wallClockTime>
<numberOfNodes> 1;1;1;1;1;1;2;4</numberOfNodes>
</resources>
<resources name="eagle">
<numberOfCores> 1;2;4;8;16;32;64;128</numberOfCores>
<wallClockTime>
637.1855649063;414.5110108849;370.7904806239;322.1749814805;196.2847365702;212.0826437462;192.7695409192;23
4.8149867718 </wallClockTime>
<numberOfNodes> 1;1;1;1;1;2;3;5</numberOfNodes>
</resources>

</instance>
</submodel>

</performance>
</singlescale>

Multiscale.xml
<multiscale>
<info>
<job appID="compat-test" project="compat">
<computing> ES </computing>
<modeltime> large+max(smalll,small2) </modeltime>
<task persistent="true" taskld="ES-task-1">

<numberofcores>
<min> 1 </min>
<max> 1024 </max>
</mumberofcores>
</task>
</job>
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</info>
<topology>

<instance id="Init" submodel="Init"/>
<instance id="large" submodel="large"/>
<instance id="small1" submodel="small1"/>
<instance id="small2" submodel="small2"/>

<coupling from="Init" to="1arge"/>
<coupling from="large" to="small2"/>
<coupling from="large" to="smalll"/>
<coupling from="smalll" to="large"/>

<coupling from="small2" to="large"/>
</topology>
<middleware name="QCG">

<execution type="compat">
<executable>
<application name="muscle2" version="compat-1.1"/>
</executable>

<arguments>
<value>sb.cxa.rb</value>
</arguments>

<stdout>
<directory>
<location type="URL">gsiftp://results/stdout/</location>
</directory>
</stdout>

<stderr>
<directory>
<location type="URL">gsiftp://results/stderr/</location>
</directory>
</stderr>

<stageInOut>
<file name="sb.cxa.rb" type="in">
<location type="URL">gsiftp:/./sb.cxa.rb</location>
</file>

<file name="inputs.tgz" type="in">
<location type="URL">gsiftp:///inputs.tgz</location>
</file>
<file name="extract_inputs.sh" type="in">
<location type="URL">gsiftp:///extract_inputs.sh</location>
</file>
<directory name="outputs" type="out">
<location type="URL">gsiftp:/</location>
</directory>
</stageInOut>

<environment>
<variable name="QCG_MODULES LIST">compat/apps/bio</variable>
<variable name="QCG_PREPROCESS">extract_inputs.sh</variable>
</environment>

</execution>

</middleware>
</multiscale>
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5.4 Template cxa file

For the fusion / global turbulence application:

# Set class and library paths

# total simulation time
Senv["max_timesteps"] ="1.0"

# declare kernels

init = Instance.new('init")

ETS = Instance.new('ETS")

GEM = Instance.new('GEM')

CHEASE = Instance.new('CHEASE")

equildup = Instance.new('equildup')

corepdup = Instance.new('corepdup')

coreprof2equilibrium = Instance.new('coreprof2equilibrium')

# parameters

init['dt']="0.0e0"

init['T']="0.0e0"

init['dx']="0.0e0"

init['X']="0.0e0"

ETS['dt']|="1.0e0"

ETS['T']="1.0"

ETS['dx']="1.0e-2"

ETS['X']="1.0"

GEM['dt']="1.0e-6"

GEM['T']="1.0"

GEM['dx']="1.0e-3"

GEM['X']="1.0e-2"

CHEASE['dt']="0.0e0"

CHEASE['T']="1.0"

coreprof2equilibrium['dt']="0.0e0"
coreprof2equilibrium['T']="1.0"

# configure coupling

init.couple(ETS, 'initCPOs')

ETS.couple(corepdup, 'coreprof => 'corep_in')
corepdup.couple(coreprof2equilibrium, 'corep _outl' => 'coreprof’)
corepdup.couple(GEM, 'corep_out2' => 'coreprof’)
coreprof2equilibrium.couple(CHEASE, 'equilibrium' => 'equilibrium_in")
CHEASE.couple(equildup, 'equilibrium_out' => 'equil in')
equildup.couple(GEM, 'equil outl' => 'equilibrium")
equildup.couple(ETS, 'equil_out2' => 'equilibrium')
GEM.couple(ETS, 'coretransp')

5.5 Additional Information on the ISR application (ITMO University)

Cardiovascular diseases are one of the leading causes of death in the world. Diseases of coronary arteries
are an important subset of these diseases. They are often corrected by stenting the affected artery. One
of the important complications of stenting is a development of a repeated narrowing, or restenosis.
Restenosis is governed by several interconnected processes, and this model studies the cell growth in
the vessel wall, drug diffusion from the stent struts and the effects of the surrounding geometry and
blood flow on tis cell growth. In deliverable D3.1 we have described in some detail our model and its

application as an Extreme Scaling multiscale application.
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This model contains a multitude of parameters, most of which are selected based on experimental data.
To study the sensitivity of the growth process on these parameters, we have performed a simulation in
spirit of the Replica Computing pattern. We have not yet actually used RC pattern services as described
in Deliverable 2.2, this we will do in phase 2 of the project.

The important parameters which were tested in this experiment are the percentage of pores
(fenestrations) in the internal membrane and the threshold weight of the cell’s neighbours C/, exceeding
which stops the cell growth. The pore percentage is based upon the data about the concentration and the
size of pores in experimental samples, and the C/ is selected based on the cell configuration in the model
and on the experimental end configuration. We have performed all these simulations on the Lomonosov

supercomputer located at Moscow State University.
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Figure 1 — endpoint number of new cells for different modelling parameters. No data for parameters
(0.06, 6.5).

Figure 1 shows the results of modelling for different pairs of these parameters. The cell growth is
estimated based on the amount of new cells in the vessel lumen. Typical stent deployment parameters
are used: strut width of 0.2 mm and injury score (IS) 2, i.e. the membrane is stretched but not ruptured.
The data for the fenestration percentage of 0.06 and CI = 6.5 is absent due to a technical error during
the simulation.

The results show that for the pore percentage, the biggest difference in growth shows up at the moment
of qualitative transition from the absence of pores to their presence, while increasing the number of
pores has a much smaller impact. Without the pores, the cells can only move to the lumen through the
ruptures in the IEL (which aren’t present in this deployment configuration), so there is almost no growth
for CI 6.5 and 8.5 (12 new cells for CI = 6.5 and 8025 for CI = 8.5). For CI = 10.5 a minor growth inside

the vessel wall is observed. In the presence of the fenestrations, the CI value is much more important
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than the exact percentage of the fenestrations. For further modelling, a value of 4% fenestrations and CI
=10.5 were chosen, since they agree with the experiment the best.

It is commonly thought that the development of restenosis is greatly affected by the stent configuration
(mainly strut width) as well as the stent deployment depth and vessel damage. To test the effect of these
parameters in our model we have performed a trial using the replica computing pattern. We have tested
three stent geometries and three injury scores that corresponded to three different deployment depths.
At IS 1 the internal lamina is stretched at the angle less than 45°, at IS 2 this angle is between 45° and

90°, and at IS 3 the membrane ruptures.
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Figure 2 — the average end thickness of neointima over struts for different stenting conditions.

The resulting neointima thickness over stent struts is shown in Figure 2. A very narrow stent penetrates
deeply into the tissue, and the dividing cells close up over it quickly, so the end result is almost the same
for all cases. Wider stents are more sensitive to deployment depth, but the difference between the normal
and the wide stent is only notable for severely damaged vessels.

In these experiments we have clarified the model parameters and have demonstrated the effects of stent

configuration and deployment of neointima growth in the model.
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