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1 Executive summary 
After a short review of the Multiscale Computing Patterns, this deliverable introduces in more detail 

the specific architecture of the Multiscale Computing Patterns software and its components, in line 

with the overall ComPat architecture as described in Deliverable D5.1. The Multiscale Computing 

Patterns and Algorithms software consists of description, optimisation and service parts. The 

description part is where the task graph, entered by the user using xMML, is translated to understand 

the type of pattern. Moreover, this part includes submodel definitions. The optimisation part is where, 

after detecting the type of the pattern in the description layer, algorithms are chosen and applied to 

find the most suitable mapping between submodels and HPC resources. Finally, the service part is the 

middleware layer, where the submodels are mapped to number and type of physical resources and 

distributed, based on the suggestions from the optimisation part and other execution elements such as 

queueing time and availability of resources. Three examples of using the Multiscale Computing 

Patterns and Algorithms software are illustrated, and examples of cost functions are worked out, 

showing that a wide range of variables for Multi-objective Optimisation algorithms can be chosen. 

The idea is that Multiscale Computing Patterns software will automatically detect which cost functions 

and algorithms to pick, based on the type of the pattern and user requirements. 

 

2 Main body of the report  

2.1 Introduction 

The goal of Work Package 2 is, quoting from Part A of the DoA, to “create a general mapping from a 

multiscale model to a multiscale computing pattern. Reusable software components will be created for 

each of the three computing patterns. MML specifications of multiscale models will be modified to 

include these components, and the modified MML will be converted to input for the high-level tools 

(WP4) and middleware (WP5). The performance of the patterns will be tested and predicted.” 

 

This deliverable D2.2 should then “report on the algorithms and components used to construct the 

Multiscale Computing Patterns, details of the actual implementation, and preliminary results on 

performance measurements.” and builds upon deliverable D2.1 on Existing Software Suitability and 

Adaptation. It is mainly based on work performed in task 2.3 (Development of the multiscale 

computing patterns) but also on task 2.2 (Implementing a method for converting MML for ComPat) 

and 2.4 (profiling and performance measurement). 

 

Please note that this deliverable D2.2 was originally scheduled in M24, but because of the change of 

the reporting period from 12 months to 18 months during the grant preparation phase, was moved back 
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from M24 to M18. As consequence, we cannot yet report on “preliminary results on performance 

measurements”, as the corresponding task 2.4, although started in M13, has not yet produced tangible 

results. We do refer to deliverable D4.2 where the first important results on profiling and measuring 

performance of multiscale applications are reported, and where input the type of information that will 

be needed by the Multiscale Computing Patterns was provided by WP2. WP4 delivers the tools that we 

need in task 2.4 to allow us to carry out the intended performance measurements. 

 

In D2.1 we wrote that “converting MML for ComPat, task 2.2, has partly been addressed” and “…we 

will therefore continue to put effort in this task, slightly deviating from the original DoA and 

extending this task into the second year of the project”. We have now reached a point, given the 

current design of the Multiscale Computing Patterns (MCPs), that the information needed by them 

should not be embedded in MML, but provided as separate data files. This specifically relates to 

performance data of the single scale models, as described in section 2.3. We have however decided to 

not close task 2.2 yet, as e further development of the MCPs may warrant updates to MML. 

 

The development of the actual patterns, task 2.3, has been the major focus of WP2 during M13 to M18 

of the project. Building upon the conceptual design of MCPs as reported in D2.1, and in collaboration 

with WP3 and WP5, we have now designed a specific architecture for the Multiscale Computing 

Patterns and Algorithms software, in line with the overall ComPat architecture described in deliverable 

D5.1. We partly implemented its main features, and worked out specific examples to test these 

concepts, and thus created first implementations of the MCPs.  

 

Milestone 8 (Month18): First prototype of the ComPat multiscale development and execution 

environment. First version of MML specifications of Multiscale Computing Patterns has been reached, 

in the sense that we have implemented first version of Multiscale Computing Patterns and Algorithms 

software, and in the sense that we have now concluded that adaptations of MML are not (yet) required 

and that MML descriptions of our multiscale applications are sufficient to specify MCPs. For details, 

we refer to section 2.3.  

 

This deliverable will first quickly review the MCPs (as described in detail in deliverable D2.1), then 

introduce specific Multiscale Computing Patterns and Algorithms software and describe its 

components, and finally describe three examples of using the Multiscale Computing Patterns and 

Algorithms software.  

 

We would like to point out that this deliverable D2.2 with no doubt reflects original results obtained in 

ComPat in the first 18 months of the project and should be considered 100% ComPat foreground 

knowledge. Section 2.2 shortly summarizes the theory behind Multiscale Computing Patterns, as 
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reported in deliverable D2.1 (and also being 100% ComPat results). It then continues in section 2.3 

with the design and implementation of the MCP algorithms and software and in section 2.4 with case 

studies of acutally using the software for two MCPs. All of this are original ComPat results, and there 

is actually no overlap whatsoever with earlier obtained results in the MAPPER project. 

 

2.2 Multiscale Computing Patterns 

As a courtesy to the reader, and to keep this deliverable self-contained, this section provides a short 

summary of Multiscale Computing Patterns, as described in detail in deliverable D2.1. We do refer the 

reader to deliverable D2.1 for all details, including worked out examples. 

 

We define Multiscale Computing Patterns (MCP) as high-level call sequences that exploit the 

functional decomposition of multiscale models in terms of single scale models. We have identified 

three computing patterns that we believe are most relevant for high performance multiscale 

computing, namely 

• Extreme Scaling (ES),  

• Heterogeneous Multiscale Computing (HMC), and  

• Replica Computing (RC). 

 
The Extreme Scaling computing pattern represents a specific class of multi-scale applications where 

one (or perhaps a few) of the single scale models in the overall multiscale model dominates all others, 

in terms of computational and/or energy cost, by far. Such a dominating primary model is expected to 

scale to very large systems (i.e., multi-petascale or above) and the efficiency of the primary model 

largely determines the efficiency of the multiscale application. Consequently, one of our goals is to 

ensure minimal interference by the other single scale models, so-called auxiliary models. These 

typically have a much lower computational and/or energy cost, and could even be sequential codes. 

Load-balancing, decentralized communication, and computation overlapping are some of the 

techniques we can use here, depending on the relation between the primary and auxiliary models. 

 
In the Heterogeneous Multiscale Computing pattern, we couple a macroscopic model to a large and 

dynamic number of microscopic models. The basic philosophy is to apply a numerical solver to the 

macroscale equations and to provide the missing macroscale data using an appropriate microscale 

model. The number of microscale models required in HMC depends on spatial properties of the 

macroscale model, and can in some cases easily be in the order of 107 or more. The large number and 

size of the microscale models causes them to dominate the computational and energy cost of the 

multiscale application, and are therefore cost-critical.  
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Replica Computing is a multiscale computing pattern that combines a potentially very large number of 

terascale and petascale simulations (also known as 'replicas') to produce scientifically important and 

statistically robust outcomes. The replicas are not part of a larger spatial structure (as is the case in, for 

example, Heterogeneous Multiscale Computing), but they are applied to explore a system under a 

broad range of conditions. Replica Computing is set up through an initialization stage, which 

determines the simulations required to explore or incorporate a given parameter space. This 

initialisation is then followed by one or more sequences of simulation and data processing.  

 
An important result from deliverable D2.1 was the realisation that the MCPs will be expressed on the 

level of the task graph. The key idea is that we define generic task graphs for each MCP, such that 

application specific task graphs can be embedded in the generic task graphs. We use the generic task 

graph to obtain an optimized mapping of the application to an HPC resource, and try to find generic 

algorithms for this. What exactly is meant by an ‘optimal’ mapping needs to be defined, or can be 

made application specific. In any case, it should be optimized with respect to several dimensions 

(efficient use of resources, power consumption, wall clock time, load balancing, fault tolerance). The 

way we proceed is that for each generic task graph we will specify sets of optimal execution profiles, 

or define constrained optimization problems that should be easily solvable when fed with details of the 

specific applications. An MCP therefore is a tuple of a generic task graph plus data or models on the 

performance of single scale models, a specification of a specific multiscale application in terms of the 

xMML and a set of algorithms and heuristics that combine this into detailed input/configuration files 

for the execution environment. 

 

We have worked out generic task graphs for the Extreme Scaling (ES), the Heterogeneous Multiscale 

Computing (HMC), and Replica Computing patterns, see deliverable D2.1.  

 

In the generic task graph for ES, a collection of auxiliary models can either be executed in parallel 

with the primary model, or in series with the primary model. Depending on the execution behaviour of 

the primary and auxiliary models on HPC machines, a specific execution of the ES graph is considered 

(for an in-depth example we refer to deliverable D2.1).  

 

For HMC a large and dynamic number of microscale simulations is coupled with one macroscale 

model, with a database in between. The role of the database is to prevent computing of previously 

computed results, to interpolate between earlier computed results, and to submit microscale simulation 

jobs when needed.  

 

For RC we find two variants, which capture the behaviour of the three types of replica computing that 

we defined. In both cases a potentially large set of replicas are executed independently and then feed 
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into a second master process. In RC, if a replica fails, a restart is not immediately needed, as long as 

the overall statistical quality of the ensemble that is computed by the RC application is maintained. 

This is a main distinction with HMM, where if a microscale simulation fails it must be restarted, as the 

database requested output from this microscale simulation. So, although in terms of load balancing the 

HMC and RC patterns are pretty close, in terms of fault tolerance they have quite different constraints. 

 

2.3 The Multiscale Computing Patterns and Algorithms software  

2.3.1 Design 

The	   Multiscale Computing Patterns and Algorithms software consists of three parts, namely the 

submodels Description Part (the user input of the multiscale computing patterns software), the 

Optimisation Part (performance oriented services and tools) and the Services Part (underlying 

resource allocation service, i.e. Quality in Cloud and Grid “QCG”). Figure 1 shows the relationships 

between the different parts and their components. At the top, the description of the multiscale model to 

be executed is shown, with the task graph expressed in textual form, submodel definitions, and 

simulation input and configuration data. The description part also includes any restrictions in relation 

to resources that the single scale simulations can use. These are fed into a translation step to convert 

them from their original formats into a format suitable for the patterns performance services.  

 
Figure 1: Architecture of the Multiscale Computing Patterns and Algorithms software 

 

The optimisation part contains the patterns performance services and performance prediction tool. The 

performance prediction tool collects measurements of performance and efficiency of the submodels 

under various execution scenarios and uses that information to compute execution on available 

resources. These data are the input of the patterns performance services, together with a description of 

the available classes of compute resources (e.g. CPU nodes, GPU nodes, high-memory nodes, etc.). 

The patterns performance services then, using the requested performance metrics requested by the user 
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(such as the multiscale efficiency, throughput, fault tolerance, energy usage, or a combination), 

suggests a small collection of most suitable execution scenarios to QCG for execution. QCG will then 

select the most optimal one, also considering predicted queuing times for each execution scenario. 

Finally, the execution scenarios themselves are based on the MCPs and the underlying generic task 

graphs, as discussed in deliverable D2.1. 

 

In the next part of this section, we will illustrate an overview of how the Multiscale Computing 

Patterns and Algorithms software would work, and describe in more detail their components. We will 

provide more information on how we designed the components, and the status of these components. In 

deliverable D3.2 more detail of instantiations of specific applications using the Multiscale Computing 

Patterns and Algorithms software can be found. D3.2 also provides the user perspective of the 

software, what are the tools, what to do as a user, etc. Here we provide more detail from a design 

perspective. 

 

2.3.2 Description Part 

This part provides the logical description and the requirements of a multiscale application. It builds on 

and uses formats and software from the Multiscale Modelling and Simulation Framework (that was 

described in deliverable D2.1). Three data files make up the description part, which are the text task 

graph, the submodel definitions and the simulation input and configurations. This information is 

converted by the translation services into a set of standardised inputs for the patterns performance 

services. Below we provide more information on each of these parts. 

1. Text task graph 

This file holds a pseudo representation of the task graph in the form of a highly adapted 

xMML. One important issue here is to identify which information to retrieve. Currently this is: 

• Motif components, which are the submodels and their dependencies, 

• Type of the pattern (i.e. ES, RC or HMC), 

• Multiscale model time, a formula composed by the translation service to express the 

overall time of the multiscale applications in terms of the execution time of the single 

scale models and the specific multiscale computing pattern. 

2. Submodels definitions   

This file gathers all the information required for the single-scale model to run, in other words, 

all the requirements needed to be able to execute the multiscale simulation. This includes: 

• models to be loaded, 

• submodel specific applications, 

• specific number of cores (or set of cores) per submodel, if required, 
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• set of restrictions on the level of the submodel such as available environment modules, 

specific library, allowed resources, etc. 

This could rely on earlier developed MAPPER tools such as MAD/MaMe1.  MaMe, the 

Mapper Memory, is a database application for storing descriptions of submodels, mappers and 

filters, and MML graphs in xMML format. MAD (Multiscale Application Designer) is a 

graphical development environment for multiscale models. It enables the user to draw an 

MML diagram, using submodels from MaMe or defining them directly by writing code. 

MaMe could thus be a source of submodel descriptions for input into the multiscale computing 

patterns software. Currently we do not use these tools, but in the next phase of the project we 

intend to investigate if and how the tools could be used to integrate the multiscale computing 

patterns software into the overall Multiscale Modelling and Simulation Framework 

3. Simulation input and configuration file 

Here, the user specifies a path to a folder that contains configuration files and input parameters 

for a multiscale application. Users specify the required total number of cores for the 

simulation. These submodels and configuration files will be the input required for the 

optimisation part. Also, a set of restrictions on the whole multiscale simulation have to be 

defined in a generic way. These restrictions refer to e.g. available environment modules, 

specific library (e.g. MUSCLE2), middleware used, allowed resources, etc. 

4. Translation services 

The purpose of the translation services is to gather the user-supplied input (task graph for the 

simulation, simulation configurations and restrictions) with submodel information (definitions and 

restrictions) to identify the patterns contained within the task graph and communicate the required 

information to the optimisation part of Multiscale Computing Patterns and Algorithms software. 

Currently, the translation tool is application- specific, but in the second phase of the project, we will 

develop patterns recognition to identify the multiscale computing patterns present in the task graph. The 

output of the translation service are two xml files, specific for the multiscale pattern. One file 

(matrix.xml) stores all information about single scale submodels and components: name of the 

submodels, codes instantiating each submodel and for each code, possible restrictions, information 

about resources where it is available, benchmarking details and initial performance results. The other 

one (multiscale.xml) contains information about the multiscale model expressed as a set of single scale 

submodels coupled together: choice of codes which implement each submodels, coupling topology (by 

pairing submodels), and specific information on the application (paths, inputs, environment, pre and 

post-processing steps). For clarity, we choose to use one xml file for submodule level of information 

(submodel definitions and restrictions and the performance matrix per submodel) as shown in  

Listing 1. The second output concerns the coupled multiscale information (simulation information and 

QCG script data) in Listing 2. 

                                                        
1 http://www.mapper-project.eu/web/guest/mad-mame-ew 
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<submodel name="turb" class="MPIKernel"> 
            <instance name="GEM"> 
                <restrictions>  
                    <cpu> 
                        <number> (2^x)*k:k=8 </number> 
                        <min_cores> 64 </min_cores> 
                        <max_cores> 2048 </max_cores>  
                    </cpu> 
                </restrictions> 
           
                <benchmark_input> 
                    <file type="URL">gsiftp://input_to_GEM.xml</file> 
                    <iterations> 1000 </iterations> 
                </benchmark_input> 
                <scalability_formula> NY </scalability_formula> 
                 
                <available_resources> 
                    <resource name="supermuc" nodeType="thin"/> 
                    <resource name="eagle" nodeType="haswell_128"/> 
                </available_resources> 
                     
            </instance> 
        </submodel> 
 

Listing 1: Submodel definitions (matrix.xml), this snippet shows the part of defining a singlescale 

model (turbulence) as a part of the multiscale fast track (fusion). 

 
<multiscale> 

    <info> 
        <job appID="compat-test" project="compat"> 
            <computing> ES </computing> 
            <modeltime> ETS + CHEASE + GEM </modeltime> 
            <task persistent="true" taskId="ES-task-1"> 
         
                <numberofcores> 
                    <min> 64 </min> 
                    <max> 2048 </max> 
                </numberofcores> 
            </task> 
        </job> 
    </info> 
   
  <topology> 
    <instance id="CONTINUE" helper="init"/> 
    <instance id="ETS"      helper="transp"/> 
    <instance id="GEM"      submodel="turb"/> 
 ... 

    </topology> 
 
    <middleware name="QCG"> 
     
        <execution type="compat"> 
            <executable> 
                <application name="muscle2" version="compat-1.2"/> 
            </executable> 

 
Listing 2: multiscale coupling file (multiscale.xml), the snippet shows the input requirements to run the 

multiscale application, such as minimum and maximum number of cores required by the user to run a 

simulation, instances, coupling topologies and middleware specific requirements.  
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2.3.3 Optimisation part 

The optimisation part operates after receiving the required input from the description layer. This part 

can be logically divided into three main components, namely node descriptions, patterns performance 

services and performance prediction model. 

1. Node descriptions 

In these descriptions, we specify a node in two way: 

• Node type: as a spefic physical hardware configuration, 

• Node class: as a logical group of node types equivalent from the point of view of the 

performance of selected criterion of the sub-model. 

a. Node type  

A single node type represents a set of the same or very similar physical computation 

nodes, basically the same hardware configuration including interconnects. The types 

of nodes should be defined based on knowledge about resources gathered a priori by 

the multiscale computing patterns software from the infrastructure provider. Table 1 

shows the current node types used in this phase of the project. 

 

Table 1: node types, an input to the patterns performance  

Type name # of 

nodes 

Processors 

/ node 

Cores / 

node 

Threads 

/ node 

RAM / 

node  

Processor name 

host Type     (GB)  

eagle haswell_64 492 2 28 28 64 Intel(R) Xeon(R) 

CPU E5-2697 v3 @ 

2.60GHz 

haswell_128 460 128 

haswell_256 52 256 

supermuc Thin 9216 2 16 32 32 Intel(R) Xeon(R) 

CPU E5-2680 @ 

2.70GHz 

Fat 205 4 40 80 256 Intel(R) Xeon(R) 

CPU E7-4870 @ 

2.40GHz 

stfc Default 118 2 16 16 64 Intel(R) Xeon(R) 

CPU E5-2650 v2 @ 

2.60GHz 

 

b. Node class 

Node classes are sets of different node types where computations of a single kernel 

have a comparable performance. Node class is specific for every single scale model, as 
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different single scale models usually achieve different performance on the same type 

of nodes. The node class will be created by the patterns performance services during 

creation of a single scale model performance matrix. During this phase, the single 

scale model restrictions that might limit the set of the available types of nodes is also 

taken into account.  

2. Patterns performance services 

The patterns performance services combine two main components: 

• Performance Matrix 

• Performance Model 

Each component deals with a different set of issues. The Performance Matrix holds the data 

required for optimisation. In the performance model, requested criteria are computed (e.g. 

overall efficiency, etc.) on the set of execution scenarios received from the performance 

matrix.  

a. Performance Matrix 

The performance matrix, shown in Figure 2, is the main data structure to be used in 

the performance model. Currently, this matrix contains only wall clock time 

information from the submodels. This is ideally done by measuring the overall time of 

the submodel using 1 to n cores for the first node, followed by measuring or 

estimating the overall time of the submodel utilising 2 to N nodes. Note that 

production codes may usually not fit in one node at all, in which case this will become 

a constrained on that specific single scale model and the performance matrix will hold 

data only for the minimal possible number of nodes Nmin to N nodes. Likewise, other 

codes may only run up to a maximum number of nodes Nmax, again leading to a 

constrained on that single scale model. These performance measurements should be 

repeated for all available types of nodes. Based on performance results, types of nodes 

will be grouped into classes, where a single class will contain types of nodes with 

comparable performance. Moreover, we propose to construct one performance matrix 

per submodel per problem size to fulfil all the requirements and to supply the patterns 

performance services with the ability of scaling with different problem sizes, using 

performance models that will be developed in the second phase of the project. This 

could e.g. be done using interpolation as a combination of problem size of the 

multiscale model and the resources, relying on performance models. The matrix might 

contain specially marked values (e.g NA), for type of nodes where a specific single 

scale model is not supported (see also discussion above). Note that such information is 

available in the “sub-model definition” component. Listing 3 shows an example. 
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Figure 2: Performance Matrix layout (table is intentionally left empty) 

 
        <performance> 
        ... 
        <submodel name="turb"> 
            <instance name="GEM"> 
                <resources name="supermuc"> 
                    <nodeType> thin </nodeType> 
                    <numberOfCores> 64;128;256;512;1024;2048</numberOfCores>  
                    <wallClockTime> 767.9; 408.5; 197.2; 93.7; 45.2; 32.4 
                    </wallClockTime> 
                    <numberOfNodes> 4;8;16;32;64;128</numberOfNodes> 
     
                </resources> 
                 
                <resources name="eagle"> 
                    <numberOfCores> 64;128;256;512;1024;2048</numberOfCores>  
                    <wallClockTime> 863; 517; 255; 85; 44; 34</wallClockTime> 
                    <numberOfNodes> 3;5;10;19;37;74</numberOfNodes> 
                </resources> 
                     
            </instance> 
        </submodel> 
         
    </performance> 
 

Listing 3: The performance section (in matrix.xml) for the earlier shown submodel (turb). Two 

architectures are shown “supermuc” and “eagle”. In this benchmark a node type in supermuc is 

considered namely “thin” node type. In eagle, another one node type “haswell_128” was used to measure 

the performance of the benchmark. 

 

b. Performance Model 

The main aim of the performance model is to provide a mapping of submodels to 

classes of nodes, based on the available performance data, given the specific MCP, 

and based on user defined criteria (w.r.t. e.g. energy usage, fault tolerance, or other 

criteria). The mapping will be established by computing a cost function, given the user 

requirements. The cost function that we so far applied is the overall efficiency (see 

section 2.4), because larger efficiency implies better usage of resources. In the second 
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phase of the project, we will turn to more involved scenarios, also taking into account 

energy awareness and fault tolerance. The patterns performance service will generate a 

small number of alternative execution tuples, allowing QCG to pick the one that can 

be deployed and executed given actual status of the resources. An Execution Tuple 

will hold, for every kernel Ki, implementing single scale model i of the multiscale 

model, the number of required cores Ni, and the required node class Ci. The 

importance of the alternatives here is to give the middleware the freedom to choose 

from a set of resources with comparable performance per kernel. This component is 

subject to ongoing development and will be enhanced with relevant features during the 

second phase of the project. We will enhance this component to extend the patterns 

with capabilities to also consider issues related to energy awareness and fault-

tolerance. For each pattern we will formulate constrained optimization problems that 

as output will deliver alternative execution profiles to QCG.  

3. Performance Prediction tool 

This tool will be based on Performance Matrices and will provide information about 

performance of kernels (submodels) on a specific number of cores/nodes. For now, a 

Performance Matrix is filled with exact values measured during execution of kernels. In the 

final implementation, it will be possible to make an optimisation of the construction of the 

performance matrix by interpolating some values and avoiding extra calculations. Note that 

exactly in this tool we can also include performance predictions for non-existing emerging 

exa-scale configurations and as such assess how MCP could optimally benefit from such 

hypothetical machines. 

 
          <plans> 
            <plan id="plan1"> 
              <criteria> 
                <time>PT0H10M</time> 
              </criteria> 
              <group> 
                <kernel refid="GEM"></kernel> 
                <class refid="c1"> 
                  <cores>1024</cores> 
                </class> 
              </group> 
            </plan> 
 

Listing 4: A snippet of patterns performance services output, a plan is a group of single scales models (can 

be the whole multiscale model or part of it) with a number of classes of nodes and cores assigned to each 

submodel in a group. This is input of the services part of multiscale computing patterns software. For 

details of plans, we refer to D5.2.  
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The output of the patterns performance services will be several allocation plans, where a plan is a specific 

mapping of the multiscale model to resources. Details of these plans (that is, the input to QCG) is described in 

D5.2.  

Listing 4 shows the plan part of this output. Note that in this example we show one allocation plan, whereas in 

reality the output will typically have in the order of three such plans. 

 

2.3.4 Services part 

The main component here is the middleware, which is extensively described in deliverables from 

WP5. The service part will select the best allocation plan based on the Execution Tuples presented 

earlier by mapping of computational kernels to the concrete number of physical resources of a specific 

type and then pick the efficient and reliable execution of the application on the distributed 

heterogeneous infrastructure (EEE). Moreover, this choice is based on other factors such as 

availability of the requested classes of nodes and average queueing time for a specific job. For more 

details on the service provided by the tool, we refer to D5.2. 

2.4 Using the Multiscale Computing Patterns and Algorithms software 

2.4.1 Introduction 

In this section, the input files in the description part, some of the calculations of the patterns 

performance services and the output to QCG for the Extreme Scaling computing pattern (based on 

MUSCLE2) and Replica Computing pattern (Binding Affinity Calculator (BAC) based on scripts) are 

presented. For details of specific applications as well as a user perspective of using the software we 

refer to deliverable D3.2. 

 

2.4.2 Extreme Scaling  

It all starts with a formal description of the task graph using the XMML format, which describes each 

submodel, their time and space scales and inputs/outputs. This can be transformed into different files 

by different tools of the translation services: 

• Using the jmml tool2, the skeleton of a MUSCLE2 configuration file can be produced (cxa 

file in Ruby) to assist the developer when implementing the targeted MUSCLE2 

application (optional in case when the cxa file was already implemented). In addition, to 

give a visual representation of the coupled application, the scale separation map, the 

                                                        
2 The Java Multiscale Modeling Language implementation, developed in the MAPPER project, see 
https://github.com/blootsvoets/jmml 
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coupling topology and a task graph representing a few iterations can be generated also 

with jmml. 

• Using a generic python script, a skeleton for both matrix.xml and multiscale.xml can be 

inferred from the XMML description. The developer can complete them by adding all 

required information, as described in the previous section. 

Next, by using the command line, with input as shown in Figure 3, a user can pass both matrix.xml 

and multiscale.xml to the patterns performance services. Along with this input, the user will have the 

ability to specify the benchmark flag ‘-b’, which will run a set of ready-made benchmark files to fill 

the performance matrix automatically. Note that not all functionality is available yet, we will make 

this available in the next phase of the project. 

 

 
Figure 3: current and proposed command line inputs 

 

Before submission to QCG, the user specifies the required number of cores for the overall multiscale 

simulation (in multiscale.xml). Next, the patterns performance service generates a list of possible 

resource allocation plans. Based on the criteria chosen by the user, a first set of scenarios can be 

immediately excluded. Then, the rest are examined against the selected cost function (see below). The 

best three scenarios (and a combination of node classes) are then sent to QCG as multiple plans. The 

patterns performance services output for the SandBox application (see deliverable D3.2) is shown in 

Figure 4. In this run, we used the sandbox application and specified minimum time as a cost function 

to generate suggestions to QCG. 
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Figure 4: patterns performance services commands standard output 

  

2.4.2.1 Cost function(s) 

Initially, we analyse the pattern of the multiscale application and currently manually decide which cost 

function is suitable. This will be automated at a later stage of the project. In this subsection, we will 

show initial trials of the cost functions used per application. 

 

Figure 5 shows the task graph for the fusion fast track application. It falls in the class of an Extreme 

Scaling application with serial auxiliary models. For this serial execution, we will use the total time of 

execution as the cost function. However, we will also include efficiency as a proof of concept. Figure 

6, illustrates the time and efficiency of the primary model, while the other single scale models (ETS 

and CHEASE) are serial auxiliaries. 

 
Figure 5: task graph for the fusion application 
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Figure 6: Runtime and efficiency on different resources, for one iteration of the primary submodel of the 

fusion application. 

 

 
Figure 7: task graph for the SandBox application 

 

One motif of the task graph for an instance of the sandbox application is shown in Figure 7. In this 

example, the execution of one of the auxiliaries is comparable to the primary (Tpr ~ Taux).  For this 

execution, we will use resource usage (core-hour consumption) as a cost function. We will also take 

the total time as another variable. We suppose the primary model ‘large’ is running in other nodes than 

auxiliaries (same node type but different physical node). For simplicity, we chose eagle nodes for this 

example because the number of cores divides evenly with the number of processors requested. Next 

we calculated the resource usage (R) as 𝑅 = 𝑃 ∗ 𝑇, where P is the total number of cores in the used 

nodes, T is the total makespan time. Figure 8 shows the resource usage and the actual use of the set of 

nodes where primary the model runs. The actual resources usage for the primary model is an order of 

magnitude less than the total usage, which indicate that a large number of resources are idle waiting 

for the auxiliaries to finish. To overcome this, we need to interleave between two instances of the 

application to increase the throughput by factor of two while using the same resources. This scenario 
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was introduced and discussed in Deliverable D2.1. For illustration Figure 9 represents the time of the 

execution scenarios. 

 

 
Figure 8: Resource usage of one node type (thin) executing the primary model for many different 

scenarios. The x-axis shows scenarios that were considered, where the first number indicated to number of 

cores for the first submodel and so on. 

 

 
Figure 9: Execution time on one node type (thin) executing the primary model for many different 

scenarios. The x-axis shows scenarios that were considered, where the first number indicated to number of 

cores for the first submodel and so on. The scenarios are sorted on execution time 

 

For the full description of Fusion and sandbox application, including the input output files to the 

multiscale computing patterns software, we refer to deliverable D3.2. 

 

2.4.3 Replica Computing (Binding Affinity Calculator) 

The procedure for the BAC is similar to that for Extreme Scaling. The starting point for the BAC 

application (and all RC pattern applications) is an XMML format description. As described in 

Deliverable 3.2, a “multiplicity” tag in the “instance” node of the XMML description indicates that 

multiple instances (replicas) are required for that submodel. The python script detects the presence of 
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this tag, and identifies that the RC pattern is required, and the associated cost-function in the patterns 

performance software should be invoked (through setting the <computing> node as RC in 

multiscale.xml). 

 

There are some differences to the ES pattern procedure detailed above due to the specific 

computational requirements of the BAC. Firstly, within each replica, the BAC does not use the 

MUSCLE coupling library, as it relies on a simple workflow (an output from one submodel (NAMD) 

is used as input to the next submodel (AmberTools)). Therefore, there is no need to create a MUSCLE 

cxa configuration file. Secondly, BAC has previously used the FabSim tool extensively to perform 

simulation runs and, therefore, we have added an option to the python script to allow the matrix.xml 

and multiscale.xml files to be completed (as much as possible) through reading of FabSim 

configuration files. Specifically, it uses the “machines.yml” configuration file from FabSim, which 

lists the configuration settings of submodels on remote resources. An example of a user-specified 

BAC YaML file is given in the Annex of Deliverable 3.2. Information specific to ComPat (and not 

required by FabSim) can also be added to this file, including restrictions on the submodel (GPU / CPU 

compatibility, max / min number of cores, etc.). This allows submodel information to be reused if it is 

required for different multiscale applications. A “-y” command line flag to the python script is used to 

indicate that a FabSim compatible YaML file can assist the completing of matrix.xml and 

multiscale.xml. 

 

In the same manner as described for the ES pattern, the jMML tool will produce a taskgraph which 

can be visually inspected by the end-user. Currently this is the taskgraph within a single replica.  The 

python script, using the xMML description and the YaML file, will generate a matrix.xml and 

multiscale.xml file. The fields within each field are completed using the YaML file or by the user, as 

appropriate. As in the ES pattern, performance information is currently entered into matrix.xml by the 

user, but in future this will be added automatically using the tools provided by WP 4. An example of a 

complete matrix.xml and multiscale.xml for the BAC is given in the Annex to Deliverable 3.2. 

 

Following the procedure outlined above for the ES pattern, the user passes matrix.xml and 

multiscale.xml to the patterns performance service. Unlike the ES pattern, the user does not need to 

specify the required number of cores for the overall simulation. This is decided by the patterns 

performance service by calculating the cost function, described below. 

 

2.4.3.1 Cost function(s) 

Finding a cost function for RC that will allow to generate resource allocation plans is quite different 

then for ES. First, there is an obvious trade-off between the number of replicas that must be executed, 



ComPat - 671564 

 

[D2.2  First Report on Multiscale Computing Patterns and Algorithms]  Page 22 of 24 

the minimum number of cores that one single replica needs, and the total number of cores available for 

the overall job. Moreover, most of supercomputers have a limit constraint on the job queue so it is not 

allowed to run more than a certain number of replicas per user. The performance data for RC uses the 

minimum time per replica for different node types in different hosts, as shown in Figure 10 for a single 

BAC replica. In the simplest model, where we consider only time to solution, all replicas would be run 

concurrently on the node with the shortest running time per replica. However, there are several 

constraints that the patterns performance model must also consider, and we are currently developing 

more sophisticated models to reflect these constraints. 

 

Most supercomputers have a limit on the number of jobs that can be run/queued at any moment in 

time. For example, on SuperMUC, the maximum number of jobs that can be run concurrently on the 

thin nodes in the “general” queue is 8, while there are no restrictions on the Eagle machine at PSNC. 

 
Figure 10: Time and efficiency per replica on different number of processors on different node types 

 

As an example, if we have two RC applications which require 40 and 80 replicas respectively, the 

pattern performance model needs to calculate which is faster: running all replicas at one 

supercomputer supermuc (while taking into account the constraint of concurrently running 8 jobs per 

user) or distributing the jobs among different hosts, for example, across supermuc and eagle, using the 

functionality in QCG to run across multiple resources. To illustrate how this could be coordinated, let 

us take the hypothetical situation that there is also a 12 job limit on concurrent jobs running on Eagle. 

In Figure 11, we show the time to completion as a function of the number of “batches” running on 

supermuc, where a “batch” is defined as a set of 8 concurrent running jobs on supermuc. The 

remainder of the replicas are run on Eagle (again in “batches” of up to 12 jobs). 

 

Figure 11 shows that for 40 replicas, the shortest time to completion is for 2 “batches” to be run on 

supermuc, while for 80 replicas, the minimum time to completion is for 4 “batches” to be run on 

supermuc. It is clear there is a limitation to this model; it will only be realistic if the time spent in the 

queue is very short. Otherwise, the time to completion could be very different to that predicted in 

Figure 11, and we could envisage the most efficient split in replicas across resources being completely 

changed if the queuing times are very different across the resources. In the next phase of the project, 
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we will investigate ways to estimate queuing times and to incorporate them into the performance 

model. It is obviously highly non-trivial to accurately estimate queuing times and we will judge 

whether historical data (average queueing times, for example) is sufficient to formulate the most 

efficient split across resources. 

 

 
Figure 11: Time of running multi-replicas simulations across 2 resources (supermuc and eagle), as a 

function of number of “batches” (i.e. sets of 8 concurrent jobs) on supermuc. The remainder of the 

replicas are run as batches of up to 12 concurrent jobs on eagle. 

 

Another scenario that could increase efficiently is an array style job, which involves running multiple 

jobs using a single job submission. In this situation, the limitation on the number of concurrent jobs on 

a single resource could be overcome. This functionality is currently under development in WP5. 

 

2.4.4 Heterogeneous Multiscale Computing 

The HMC pattern has not yet been implemented in the pattern service. However, note that with the 

realisation of the RC pattern in the pattern service, and the related QCG functionality most key 

functionality to implement HMC is available. During the next phase of the project we are now in the 

position to also realise HMC. 

 

2.5 Plans for phase 2 (M18-M36) of the project 

So far we have implemented a first version of the multiscale computing patterns and algorithms 

software and applied it for Extreme Scaling and Replica Computing examples. In the second phase 

of the project we will enhance the capabilities of the software (with more advanced cost functions, 

taking into account more scenarios, but also energy awareness and fault tolerance), implement the 

Heterogeneous Multiscale Computing patterns, implement hybrid patters, and in collaboration with 

WP3 instantiate all ComPat applications using the multiscale computing patterns software, and then 
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carry out in depth performance measurements, demonstrating the capabilities of the patterns, and 

their benefits. 

 

3 To Conclude 
We have described in some detail the activity in WP2 in M13-M18 of the ComPat project, showing 

the design of the multiscale computing patterns and algorithms software, describing its current 

implementation and showing some of the main features and capabilities of the multiscale computing 

patterns software. With this deliverable we have reached Milestone 8 (Month18): First prototype of 

the ComPat multiscale development and execution environment. First version of MML specifications 

of Multiscale Computing Patterns. We believe WP2 is well on track we well equipped for the second 

phase of the project. 


