
This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 671564.

D2.2 First Report on Multiscale Computing

Patterns and Algorithms

Due Date Month 18 (first submission)

Month 24 (resubmission)

Delivery Month 18 +1week, PO agreed

(first submission)

Month 23 (resubmission)

Lead Partner UvA

Dissemination Level PU

Status final

Approved Internal review yes

Version 2.0

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 2 of 24

DOCUMENT INFO

Date and version number Author Comments

22.03.2017 v0.1 Alfons Hoekstra Skeleton of report, first intro text.
23.03.2017 v0.2 Saad Alowayyed Partial sections 2.3 and 2.4
24.03.2017 v0.3 Alfons Hoekstra Update, including input by

partners
27.03.2017 v0.4 Saad Alowayyed Summary and conclusion,

improved pictures, added more
input from pattern taskforce

28.03.2017 v0.5 Alfons Hoekstra More additions to 2.3 and 2.4,
links to other WPs

29.03.2017 v0.6 Saad Alowayyed Cleaning up, submit for internal
review

04.04.2017 v1.0 Alfons Hoekstra Including feedback by internal
reviewers, final document to
project manager for submission

31.08.2017 v.2.0 Alfons Hoekstra Revision of submitted D2.2
(v1.0) to incorporate M18
reviewers’ comments

CONTRIBUTORS
The contributors to this deliverable are:

Contributor Role

Alfons Hoekstra (UvA) PI and WP leader

Saad Alowayyed (UvA) contributor

James Suter (UCL) contributor

Oliver Hoenen (MPG) contributor

Derek Groen (UBRUN) Contributor

David Coster (MPG) Internal reviewer

Tomasz Piontek (PSNC) Internal reviewer

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 3 of 24

TABLE OF CONTENTS

1	 Executive summary ... 4	

2	 Main body of the report .. 4	

2.1	 Introduction .. 4	
2.2	 Multiscale Computing Patterns .. 6	

2.3	 The Multiscale Computing Patterns and Algorithms software .. 8	

2.3.1	 Design .. 8	
2.3.2	 Description Part ... 9	

2.3.3	 Optimisation part ... 12	

2.3.4	 Services part ... 16	
2.4	 Using the Multiscale Computing Patterns and Algorithms software 16	

2.4.1	 Introduction .. 16	

2.4.2	 Extreme Scaling ... 16	
2.4.3	 Replica Computing (Binding Affinity Calculator) .. 20	

2.4.4	 Heterogeneous Multiscale Computing ... 23	
2.5	 Plans for phase 2 (M18-M36) of the project .. 23	

3	 To Conclude .. 24	

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 4 of 24

1 Executive summary
After a short review of the Multiscale Computing Patterns, this deliverable introduces in more detail

the specific architecture of the Multiscale Computing Patterns software and its components, in line

with the overall ComPat architecture as described in Deliverable D5.1. The Multiscale Computing

Patterns and Algorithms software consists of description, optimisation and service parts. The

description part is where the task graph, entered by the user using xMML, is translated to understand

the type of pattern. Moreover, this part includes submodel definitions. The optimisation part is where,

after detecting the type of the pattern in the description layer, algorithms are chosen and applied to

find the most suitable mapping between submodels and HPC resources. Finally, the service part is the

middleware layer, where the submodels are mapped to number and type of physical resources and

distributed, based on the suggestions from the optimisation part and other execution elements such as

queueing time and availability of resources. Three examples of using the Multiscale Computing

Patterns and Algorithms software are illustrated, and examples of cost functions are worked out,

showing that a wide range of variables for Multi-objective Optimisation algorithms can be chosen.

The idea is that Multiscale Computing Patterns software will automatically detect which cost functions

and algorithms to pick, based on the type of the pattern and user requirements.

2 Main body of the report

2.1 Introduction

The goal of Work Package 2 is, quoting from Part A of the DoA, to “create a general mapping from a

multiscale model to a multiscale computing pattern. Reusable software components will be created for

each of the three computing patterns. MML specifications of multiscale models will be modified to

include these components, and the modified MML will be converted to input for the high-level tools

(WP4) and middleware (WP5). The performance of the patterns will be tested and predicted.”

This deliverable D2.2 should then “report on the algorithms and components used to construct the

Multiscale Computing Patterns, details of the actual implementation, and preliminary results on

performance measurements.” and builds upon deliverable D2.1 on Existing Software Suitability and

Adaptation. It is mainly based on work performed in task 2.3 (Development of the multiscale

computing patterns) but also on task 2.2 (Implementing a method for converting MML for ComPat)

and 2.4 (profiling and performance measurement).

Please note that this deliverable D2.2 was originally scheduled in M24, but because of the change of

the reporting period from 12 months to 18 months during the grant preparation phase, was moved back

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 5 of 24

from M24 to M18. As consequence, we cannot yet report on “preliminary results on performance

measurements”, as the corresponding task 2.4, although started in M13, has not yet produced tangible

results. We do refer to deliverable D4.2 where the first important results on profiling and measuring

performance of multiscale applications are reported, and where input the type of information that will

be needed by the Multiscale Computing Patterns was provided by WP2. WP4 delivers the tools that we

need in task 2.4 to allow us to carry out the intended performance measurements.

In D2.1 we wrote that “converting MML for ComPat, task 2.2, has partly been addressed” and “…we

will therefore continue to put effort in this task, slightly deviating from the original DoA and

extending this task into the second year of the project”. We have now reached a point, given the

current design of the Multiscale Computing Patterns (MCPs), that the information needed by them

should not be embedded in MML, but provided as separate data files. This specifically relates to

performance data of the single scale models, as described in section 2.3. We have however decided to

not close task 2.2 yet, as e further development of the MCPs may warrant updates to MML.

The development of the actual patterns, task 2.3, has been the major focus of WP2 during M13 to M18

of the project. Building upon the conceptual design of MCPs as reported in D2.1, and in collaboration

with WP3 and WP5, we have now designed a specific architecture for the Multiscale Computing

Patterns and Algorithms software, in line with the overall ComPat architecture described in deliverable

D5.1. We partly implemented its main features, and worked out specific examples to test these

concepts, and thus created first implementations of the MCPs.

Milestone 8 (Month18): First prototype of the ComPat multiscale development and execution

environment. First version of MML specifications of Multiscale Computing Patterns has been reached,

in the sense that we have implemented first version of Multiscale Computing Patterns and Algorithms

software, and in the sense that we have now concluded that adaptations of MML are not (yet) required

and that MML descriptions of our multiscale applications are sufficient to specify MCPs. For details,

we refer to section 2.3.

This deliverable will first quickly review the MCPs (as described in detail in deliverable D2.1), then

introduce specific Multiscale Computing Patterns and Algorithms software and describe its

components, and finally describe three examples of using the Multiscale Computing Patterns and

Algorithms software.

We would like to point out that this deliverable D2.2 with no doubt reflects original results obtained in

ComPat in the first 18 months of the project and should be considered 100% ComPat foreground

knowledge. Section 2.2 shortly summarizes the theory behind Multiscale Computing Patterns, as

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 6 of 24

reported in deliverable D2.1 (and also being 100% ComPat results). It then continues in section 2.3

with the design and implementation of the MCP algorithms and software and in section 2.4 with case

studies of acutally using the software for two MCPs. All of this are original ComPat results, and there

is actually no overlap whatsoever with earlier obtained results in the MAPPER project.

2.2 Multiscale Computing Patterns

As a courtesy to the reader, and to keep this deliverable self-contained, this section provides a short

summary of Multiscale Computing Patterns, as described in detail in deliverable D2.1. We do refer the

reader to deliverable D2.1 for all details, including worked out examples.

We define Multiscale Computing Patterns (MCP) as high-level call sequences that exploit the

functional decomposition of multiscale models in terms of single scale models. We have identified

three computing patterns that we believe are most relevant for high performance multiscale

computing, namely

• Extreme Scaling (ES),

• Heterogeneous Multiscale Computing (HMC), and

• Replica Computing (RC).

The Extreme Scaling computing pattern represents a specific class of multi-scale applications where

one (or perhaps a few) of the single scale models in the overall multiscale model dominates all others,

in terms of computational and/or energy cost, by far. Such a dominating primary model is expected to

scale to very large systems (i.e., multi-petascale or above) and the efficiency of the primary model

largely determines the efficiency of the multiscale application. Consequently, one of our goals is to

ensure minimal interference by the other single scale models, so-called auxiliary models. These

typically have a much lower computational and/or energy cost, and could even be sequential codes.

Load-balancing, decentralized communication, and computation overlapping are some of the

techniques we can use here, depending on the relation between the primary and auxiliary models.

In the Heterogeneous Multiscale Computing pattern, we couple a macroscopic model to a large and

dynamic number of microscopic models. The basic philosophy is to apply a numerical solver to the

macroscale equations and to provide the missing macroscale data using an appropriate microscale

model. The number of microscale models required in HMC depends on spatial properties of the

macroscale model, and can in some cases easily be in the order of 107 or more. The large number and

size of the microscale models causes them to dominate the computational and energy cost of the

multiscale application, and are therefore cost-critical.

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 7 of 24

Replica Computing is a multiscale computing pattern that combines a potentially very large number of

terascale and petascale simulations (also known as 'replicas') to produce scientifically important and

statistically robust outcomes. The replicas are not part of a larger spatial structure (as is the case in, for

example, Heterogeneous Multiscale Computing), but they are applied to explore a system under a

broad range of conditions. Replica Computing is set up through an initialization stage, which

determines the simulations required to explore or incorporate a given parameter space. This

initialisation is then followed by one or more sequences of simulation and data processing.

An important result from deliverable D2.1 was the realisation that the MCPs will be expressed on the

level of the task graph. The key idea is that we define generic task graphs for each MCP, such that

application specific task graphs can be embedded in the generic task graphs. We use the generic task

graph to obtain an optimized mapping of the application to an HPC resource, and try to find generic

algorithms for this. What exactly is meant by an ‘optimal’ mapping needs to be defined, or can be

made application specific. In any case, it should be optimized with respect to several dimensions

(efficient use of resources, power consumption, wall clock time, load balancing, fault tolerance). The

way we proceed is that for each generic task graph we will specify sets of optimal execution profiles,

or define constrained optimization problems that should be easily solvable when fed with details of the

specific applications. An MCP therefore is a tuple of a generic task graph plus data or models on the

performance of single scale models, a specification of a specific multiscale application in terms of the

xMML and a set of algorithms and heuristics that combine this into detailed input/configuration files

for the execution environment.

We have worked out generic task graphs for the Extreme Scaling (ES), the Heterogeneous Multiscale

Computing (HMC), and Replica Computing patterns, see deliverable D2.1.

In the generic task graph for ES, a collection of auxiliary models can either be executed in parallel

with the primary model, or in series with the primary model. Depending on the execution behaviour of

the primary and auxiliary models on HPC machines, a specific execution of the ES graph is considered

(for an in-depth example we refer to deliverable D2.1).

For HMC a large and dynamic number of microscale simulations is coupled with one macroscale

model, with a database in between. The role of the database is to prevent computing of previously

computed results, to interpolate between earlier computed results, and to submit microscale simulation

jobs when needed.

For RC we find two variants, which capture the behaviour of the three types of replica computing that

we defined. In both cases a potentially large set of replicas are executed independently and then feed

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 8 of 24

into a second master process. In RC, if a replica fails, a restart is not immediately needed, as long as

the overall statistical quality of the ensemble that is computed by the RC application is maintained.

This is a main distinction with HMM, where if a microscale simulation fails it must be restarted, as the

database requested output from this microscale simulation. So, although in terms of load balancing the

HMC and RC patterns are pretty close, in terms of fault tolerance they have quite different constraints.

2.3 The Multiscale Computing Patterns and Algorithms software

2.3.1 Design

The	 Multiscale Computing Patterns and Algorithms software consists of three parts, namely the

submodels Description Part (the user input of the multiscale computing patterns software), the

Optimisation Part (performance oriented services and tools) and the Services Part (underlying

resource allocation service, i.e. Quality in Cloud and Grid “QCG”). Figure 1 shows the relationships

between the different parts and their components. At the top, the description of the multiscale model to

be executed is shown, with the task graph expressed in textual form, submodel definitions, and

simulation input and configuration data. The description part also includes any restrictions in relation

to resources that the single scale simulations can use. These are fed into a translation step to convert

them from their original formats into a format suitable for the patterns performance services.

Figure 1: Architecture of the Multiscale Computing Patterns and Algorithms software

The optimisation part contains the patterns performance services and performance prediction tool. The

performance prediction tool collects measurements of performance and efficiency of the submodels

under various execution scenarios and uses that information to compute execution on available

resources. These data are the input of the patterns performance services, together with a description of

the available classes of compute resources (e.g. CPU nodes, GPU nodes, high-memory nodes, etc.).

The patterns performance services then, using the requested performance metrics requested by the user

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 9 of 24

(such as the multiscale efficiency, throughput, fault tolerance, energy usage, or a combination),

suggests a small collection of most suitable execution scenarios to QCG for execution. QCG will then

select the most optimal one, also considering predicted queuing times for each execution scenario.

Finally, the execution scenarios themselves are based on the MCPs and the underlying generic task

graphs, as discussed in deliverable D2.1.

In the next part of this section, we will illustrate an overview of how the Multiscale Computing

Patterns and Algorithms software would work, and describe in more detail their components. We will

provide more information on how we designed the components, and the status of these components. In

deliverable D3.2 more detail of instantiations of specific applications using the Multiscale Computing

Patterns and Algorithms software can be found. D3.2 also provides the user perspective of the

software, what are the tools, what to do as a user, etc. Here we provide more detail from a design

perspective.

2.3.2 Description Part

This part provides the logical description and the requirements of a multiscale application. It builds on

and uses formats and software from the Multiscale Modelling and Simulation Framework (that was

described in deliverable D2.1). Three data files make up the description part, which are the text task

graph, the submodel definitions and the simulation input and configurations. This information is

converted by the translation services into a set of standardised inputs for the patterns performance

services. Below we provide more information on each of these parts.

1. Text task graph

This file holds a pseudo representation of the task graph in the form of a highly adapted

xMML. One important issue here is to identify which information to retrieve. Currently this is:

• Motif components, which are the submodels and their dependencies,

• Type of the pattern (i.e. ES, RC or HMC),

• Multiscale model time, a formula composed by the translation service to express the

overall time of the multiscale applications in terms of the execution time of the single

scale models and the specific multiscale computing pattern.

2. Submodels definitions

This file gathers all the information required for the single-scale model to run, in other words,

all the requirements needed to be able to execute the multiscale simulation. This includes:

• models to be loaded,

• submodel specific applications,

• specific number of cores (or set of cores) per submodel, if required,

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 10 of 24

• set of restrictions on the level of the submodel such as available environment modules,

specific library, allowed resources, etc.

This could rely on earlier developed MAPPER tools such as MAD/MaMe1. MaMe, the

Mapper Memory, is a database application for storing descriptions of submodels, mappers and

filters, and MML graphs in xMML format. MAD (Multiscale Application Designer) is a

graphical development environment for multiscale models. It enables the user to draw an

MML diagram, using submodels from MaMe or defining them directly by writing code.

MaMe could thus be a source of submodel descriptions for input into the multiscale computing

patterns software. Currently we do not use these tools, but in the next phase of the project we

intend to investigate if and how the tools could be used to integrate the multiscale computing

patterns software into the overall Multiscale Modelling and Simulation Framework

3. Simulation input and configuration file

Here, the user specifies a path to a folder that contains configuration files and input parameters

for a multiscale application. Users specify the required total number of cores for the

simulation. These submodels and configuration files will be the input required for the

optimisation part. Also, a set of restrictions on the whole multiscale simulation have to be

defined in a generic way. These restrictions refer to e.g. available environment modules,

specific library (e.g. MUSCLE2), middleware used, allowed resources, etc.

4. Translation services

The purpose of the translation services is to gather the user-supplied input (task graph for the

simulation, simulation configurations and restrictions) with submodel information (definitions and

restrictions) to identify the patterns contained within the task graph and communicate the required

information to the optimisation part of Multiscale Computing Patterns and Algorithms software.

Currently, the translation tool is application- specific, but in the second phase of the project, we will

develop patterns recognition to identify the multiscale computing patterns present in the task graph. The

output of the translation service are two xml files, specific for the multiscale pattern. One file

(matrix.xml) stores all information about single scale submodels and components: name of the

submodels, codes instantiating each submodel and for each code, possible restrictions, information

about resources where it is available, benchmarking details and initial performance results. The other

one (multiscale.xml) contains information about the multiscale model expressed as a set of single scale

submodels coupled together: choice of codes which implement each submodels, coupling topology (by

pairing submodels), and specific information on the application (paths, inputs, environment, pre and

post-processing steps). For clarity, we choose to use one xml file for submodule level of information

(submodel definitions and restrictions and the performance matrix per submodel) as shown in

Listing 1. The second output concerns the coupled multiscale information (simulation information and

QCG script data) in Listing 2.

1 http://www.mapper-project.eu/web/guest/mad-mame-ew

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 11 of 24

<submodel name="turb" class="MPIKernel">
 <instance name="GEM">
 <restrictions>
 <cpu>
 <number> (2^x)*k:k=8 </number>
 <min_cores> 64 </min_cores>
 <max_cores> 2048 </max_cores>
 </cpu>
 </restrictions>

 <benchmark_input>
 <file type="URL">gsiftp://input_to_GEM.xml</file>
 <iterations> 1000 </iterations>
 </benchmark_input>
 <scalability_formula> NY </scalability_formula>

 <available_resources>
 <resource name="supermuc" nodeType="thin"/>
 <resource name="eagle" nodeType="haswell_128"/>
 </available_resources>

 </instance>
 </submodel>

Listing 1: Submodel definitions (matrix.xml), this snippet shows the part of defining a singlescale

model (turbulence) as a part of the multiscale fast track (fusion).

<multiscale>

 <info>
 <job appID="compat-test" project="compat">
 <computing> ES </computing>
 <modeltime> ETS + CHEASE + GEM </modeltime>
 <task persistent="true" taskId="ES-task-1">

 <numberofcores>
 <min> 64 </min>
 <max> 2048 </max>
 </numberofcores>
 </task>
 </job>
 </info>

 <topology>
 <instance id="CONTINUE" helper="init"/>
 <instance id="ETS" helper="transp"/>
 <instance id="GEM" submodel="turb"/>
 ...

 </topology>

 <middleware name="QCG">

 <execution type="compat">
 <executable>
 <application name="muscle2" version="compat-1.2"/>
 </executable>

Listing 2: multiscale coupling file (multiscale.xml), the snippet shows the input requirements to run the

multiscale application, such as minimum and maximum number of cores required by the user to run a

simulation, instances, coupling topologies and middleware specific requirements.

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 12 of 24

2.3.3 Optimisation part

The optimisation part operates after receiving the required input from the description layer. This part

can be logically divided into three main components, namely node descriptions, patterns performance

services and performance prediction model.

1. Node descriptions

In these descriptions, we specify a node in two way:

• Node type: as a spefic physical hardware configuration,

• Node class: as a logical group of node types equivalent from the point of view of the

performance of selected criterion of the sub-model.

a. Node type

A single node type represents a set of the same or very similar physical computation

nodes, basically the same hardware configuration including interconnects. The types

of nodes should be defined based on knowledge about resources gathered a priori by

the multiscale computing patterns software from the infrastructure provider. Table 1

shows the current node types used in this phase of the project.

Table 1: node types, an input to the patterns performance

Type name # of

nodes

Processors

/ node

Cores /

node

Threads

/ node

RAM /

node

Processor name

host Type (GB)

eagle haswell_64 492 2 28 28 64 Intel(R) Xeon(R)

CPU E5-2697 v3 @

2.60GHz

haswell_128 460 128

haswell_256 52 256

supermuc Thin 9216 2 16 32 32 Intel(R) Xeon(R)

CPU E5-2680 @

2.70GHz

Fat 205 4 40 80 256 Intel(R) Xeon(R)

CPU E7-4870 @

2.40GHz

stfc Default 118 2 16 16 64 Intel(R) Xeon(R)

CPU E5-2650 v2 @

2.60GHz

b. Node class

Node classes are sets of different node types where computations of a single kernel

have a comparable performance. Node class is specific for every single scale model, as

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 13 of 24

different single scale models usually achieve different performance on the same type

of nodes. The node class will be created by the patterns performance services during

creation of a single scale model performance matrix. During this phase, the single

scale model restrictions that might limit the set of the available types of nodes is also

taken into account.

2. Patterns performance services

The patterns performance services combine two main components:

• Performance Matrix

• Performance Model

Each component deals with a different set of issues. The Performance Matrix holds the data

required for optimisation. In the performance model, requested criteria are computed (e.g.

overall efficiency, etc.) on the set of execution scenarios received from the performance

matrix.

a. Performance Matrix

The performance matrix, shown in Figure 2, is the main data structure to be used in

the performance model. Currently, this matrix contains only wall clock time

information from the submodels. This is ideally done by measuring the overall time of

the submodel using 1 to n cores for the first node, followed by measuring or

estimating the overall time of the submodel utilising 2 to N nodes. Note that

production codes may usually not fit in one node at all, in which case this will become

a constrained on that specific single scale model and the performance matrix will hold

data only for the minimal possible number of nodes Nmin to N nodes. Likewise, other

codes may only run up to a maximum number of nodes Nmax, again leading to a

constrained on that single scale model. These performance measurements should be

repeated for all available types of nodes. Based on performance results, types of nodes

will be grouped into classes, where a single class will contain types of nodes with

comparable performance. Moreover, we propose to construct one performance matrix

per submodel per problem size to fulfil all the requirements and to supply the patterns

performance services with the ability of scaling with different problem sizes, using

performance models that will be developed in the second phase of the project. This

could e.g. be done using interpolation as a combination of problem size of the

multiscale model and the resources, relying on performance models. The matrix might

contain specially marked values (e.g NA), for type of nodes where a specific single

scale model is not supported (see also discussion above). Note that such information is

available in the “sub-model definition” component. Listing 3 shows an example.

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 14 of 24

Figure 2: Performance Matrix layout (table is intentionally left empty)

 <performance>
 ...
 <submodel name="turb">
 <instance name="GEM">
 <resources name="supermuc">
 <nodeType> thin </nodeType>
 <numberOfCores> 64;128;256;512;1024;2048</numberOfCores>
 <wallClockTime> 767.9; 408.5; 197.2; 93.7; 45.2; 32.4
 </wallClockTime>
 <numberOfNodes> 4;8;16;32;64;128</numberOfNodes>

 </resources>

 <resources name="eagle">
 <numberOfCores> 64;128;256;512;1024;2048</numberOfCores>
 <wallClockTime> 863; 517; 255; 85; 44; 34</wallClockTime>
 <numberOfNodes> 3;5;10;19;37;74</numberOfNodes>
 </resources>

 </instance>
 </submodel>

 </performance>

Listing 3: The performance section (in matrix.xml) for the earlier shown submodel (turb). Two

architectures are shown “supermuc” and “eagle”. In this benchmark a node type in supermuc is

considered namely “thin” node type. In eagle, another one node type “haswell_128” was used to measure

the performance of the benchmark.

b. Performance Model

The main aim of the performance model is to provide a mapping of submodels to

classes of nodes, based on the available performance data, given the specific MCP,

and based on user defined criteria (w.r.t. e.g. energy usage, fault tolerance, or other

criteria). The mapping will be established by computing a cost function, given the user

requirements. The cost function that we so far applied is the overall efficiency (see

section 2.4), because larger efficiency implies better usage of resources. In the second

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 15 of 24

phase of the project, we will turn to more involved scenarios, also taking into account

energy awareness and fault tolerance. The patterns performance service will generate a

small number of alternative execution tuples, allowing QCG to pick the one that can

be deployed and executed given actual status of the resources. An Execution Tuple

will hold, for every kernel Ki, implementing single scale model i of the multiscale

model, the number of required cores Ni, and the required node class Ci. The

importance of the alternatives here is to give the middleware the freedom to choose

from a set of resources with comparable performance per kernel. This component is

subject to ongoing development and will be enhanced with relevant features during the

second phase of the project. We will enhance this component to extend the patterns

with capabilities to also consider issues related to energy awareness and fault-

tolerance. For each pattern we will formulate constrained optimization problems that

as output will deliver alternative execution profiles to QCG.

3. Performance Prediction tool

This tool will be based on Performance Matrices and will provide information about

performance of kernels (submodels) on a specific number of cores/nodes. For now, a

Performance Matrix is filled with exact values measured during execution of kernels. In the

final implementation, it will be possible to make an optimisation of the construction of the

performance matrix by interpolating some values and avoiding extra calculations. Note that

exactly in this tool we can also include performance predictions for non-existing emerging

exa-scale configurations and as such assess how MCP could optimally benefit from such

hypothetical machines.

 <plans>
 <plan id="plan1">
 <criteria>
 <time>PT0H10M</time>
 </criteria>
 <group>
 <kernel refid="GEM"></kernel>
 <class refid="c1">
 <cores>1024</cores>
 </class>
 </group>
 </plan>

Listing 4: A snippet of patterns performance services output, a plan is a group of single scales models (can

be the whole multiscale model or part of it) with a number of classes of nodes and cores assigned to each

submodel in a group. This is input of the services part of multiscale computing patterns software. For

details of plans, we refer to D5.2.

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 16 of 24

The output of the patterns performance services will be several allocation plans, where a plan is a specific

mapping of the multiscale model to resources. Details of these plans (that is, the input to QCG) is described in

D5.2.

Listing 4 shows the plan part of this output. Note that in this example we show one allocation plan, whereas in

reality the output will typically have in the order of three such plans.

2.3.4 Services part

The main component here is the middleware, which is extensively described in deliverables from

WP5. The service part will select the best allocation plan based on the Execution Tuples presented

earlier by mapping of computational kernels to the concrete number of physical resources of a specific

type and then pick the efficient and reliable execution of the application on the distributed

heterogeneous infrastructure (EEE). Moreover, this choice is based on other factors such as

availability of the requested classes of nodes and average queueing time for a specific job. For more

details on the service provided by the tool, we refer to D5.2.

2.4 Using the Multiscale Computing Patterns and Algorithms software

2.4.1 Introduction

In this section, the input files in the description part, some of the calculations of the patterns

performance services and the output to QCG for the Extreme Scaling computing pattern (based on

MUSCLE2) and Replica Computing pattern (Binding Affinity Calculator (BAC) based on scripts) are

presented. For details of specific applications as well as a user perspective of using the software we

refer to deliverable D3.2.

2.4.2 Extreme Scaling

It all starts with a formal description of the task graph using the XMML format, which describes each

submodel, their time and space scales and inputs/outputs. This can be transformed into different files

by different tools of the translation services:

• Using the jmml tool2, the skeleton of a MUSCLE2 configuration file can be produced (cxa

file in Ruby) to assist the developer when implementing the targeted MUSCLE2

application (optional in case when the cxa file was already implemented). In addition, to

give a visual representation of the coupled application, the scale separation map, the

2 The Java Multiscale Modeling Language implementation, developed in the MAPPER project, see
https://github.com/blootsvoets/jmml

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 17 of 24

coupling topology and a task graph representing a few iterations can be generated also

with jmml.

• Using a generic python script, a skeleton for both matrix.xml and multiscale.xml can be

inferred from the XMML description. The developer can complete them by adding all

required information, as described in the previous section.

Next, by using the command line, with input as shown in Figure 3, a user can pass both matrix.xml

and multiscale.xml to the patterns performance services. Along with this input, the user will have the

ability to specify the benchmark flag ‘-b’, which will run a set of ready-made benchmark files to fill

the performance matrix automatically. Note that not all functionality is available yet, we will make

this available in the next phase of the project.

Figure 3: current and proposed command line inputs

Before submission to QCG, the user specifies the required number of cores for the overall multiscale

simulation (in multiscale.xml). Next, the patterns performance service generates a list of possible

resource allocation plans. Based on the criteria chosen by the user, a first set of scenarios can be

immediately excluded. Then, the rest are examined against the selected cost function (see below). The

best three scenarios (and a combination of node classes) are then sent to QCG as multiple plans. The

patterns performance services output for the SandBox application (see deliverable D3.2) is shown in

Figure 4. In this run, we used the sandbox application and specified minimum time as a cost function

to generate suggestions to QCG.

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 18 of 24

Figure 4: patterns performance services commands standard output

2.4.2.1 Cost function(s)

Initially, we analyse the pattern of the multiscale application and currently manually decide which cost

function is suitable. This will be automated at a later stage of the project. In this subsection, we will

show initial trials of the cost functions used per application.

Figure 5 shows the task graph for the fusion fast track application. It falls in the class of an Extreme

Scaling application with serial auxiliary models. For this serial execution, we will use the total time of

execution as the cost function. However, we will also include efficiency as a proof of concept. Figure

6, illustrates the time and efficiency of the primary model, while the other single scale models (ETS

and CHEASE) are serial auxiliaries.

Figure 5: task graph for the fusion application

INIT

TRANSP(0,finit-Oi)

EQUIL

COREPx3

TRANSP(0-1,S-Oi)

step

EQUILx3

TURB

F2DV

TURB1

state

EQUIL1

COREPx31

TRANSP(1-2,S-Oi)

step

EQUILx31

F2DV1

TURB2

state

EQUIL2

COREPx32

TRANSP(2-3,S-Oi)

step

EQUILx32

F2DV2

TURB3

state

EQUIL3

COREPx33

TRANSP(3-4,S-Oi)

step

EQUILx33

F2DV3

TURB4

state

EQUIL4

COREPx34

TRANSP(4-5,S-Oi)

step

EQUILx34

F2DV4

TURB5

state

EQUIL5

COREPx35

TRANSP(5-6,S-Oi)

step

EQUILx35

F2DV5

TURB6

state

EQUIL6

COREPx36

TRANSP(6-7,S-Oi)

step

EQUILx36

F2DV6

TURB7

state

EQUIL7

COREPx37

TRANSP(7-8,S-Oi)

step

EQUILx37

F2DV7

TURB8

state

EQUIL8

COREPx38

TRANSP(8-9,S-Oi)

step

EQUILx38

F2DV8

TURB9

state

EQUIL9

COREPx39

TRANSP(9,S-Of)

step

EQUILx39

F2DV9

end

start

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 19 of 24

Figure 6: Runtime and efficiency on different resources, for one iteration of the primary submodel of the

fusion application.

Figure 7: task graph for the SandBox application

One motif of the task graph for an instance of the sandbox application is shown in Figure 7. In this

example, the execution of one of the auxiliaries is comparable to the primary (Tpr ~ Taux). For this

execution, we will use resource usage (core-hour consumption) as a cost function. We will also take

the total time as another variable. We suppose the primary model ‘large’ is running in other nodes than

auxiliaries (same node type but different physical node). For simplicity, we chose eagle nodes for this

example because the number of cores divides evenly with the number of processors requested. Next

we calculated the resource usage (R) as 𝑅 = 𝑃 ∗ 𝑇, where P is the total number of cores in the used

nodes, T is the total makespan time. Figure 8 shows the resource usage and the actual use of the set of

nodes where primary the model runs. The actual resources usage for the primary model is an order of

magnitude less than the total usage, which indicate that a large number of resources are idle waiting

for the auxiliaries to finish. To overcome this, we need to interleave between two instances of the

application to increase the throughput by factor of two while using the same resources. This scenario

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 20 of 24

was introduced and discussed in Deliverable D2.1. For illustration Figure 9 represents the time of the

execution scenarios.

Figure 8: Resource usage of one node type (thin) executing the primary model for many different

scenarios. The x-axis shows scenarios that were considered, where the first number indicated to number of

cores for the first submodel and so on.

Figure 9: Execution time on one node type (thin) executing the primary model for many different

scenarios. The x-axis shows scenarios that were considered, where the first number indicated to number of

cores for the first submodel and so on. The scenarios are sorted on execution time

For the full description of Fusion and sandbox application, including the input output files to the

multiscale computing patterns software, we refer to deliverable D3.2.

2.4.3 Replica Computing (Binding Affinity Calculator)

The procedure for the BAC is similar to that for Extreme Scaling. The starting point for the BAC

application (and all RC pattern applications) is an XMML format description. As described in

Deliverable 3.2, a “multiplicity” tag in the “instance” node of the XMML description indicates that

multiple instances (replicas) are required for that submodel. The python script detects the presence of

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 21 of 24

this tag, and identifies that the RC pattern is required, and the associated cost-function in the patterns

performance software should be invoked (through setting the <computing> node as RC in

multiscale.xml).

There are some differences to the ES pattern procedure detailed above due to the specific

computational requirements of the BAC. Firstly, within each replica, the BAC does not use the

MUSCLE coupling library, as it relies on a simple workflow (an output from one submodel (NAMD)

is used as input to the next submodel (AmberTools)). Therefore, there is no need to create a MUSCLE

cxa configuration file. Secondly, BAC has previously used the FabSim tool extensively to perform

simulation runs and, therefore, we have added an option to the python script to allow the matrix.xml

and multiscale.xml files to be completed (as much as possible) through reading of FabSim

configuration files. Specifically, it uses the “machines.yml” configuration file from FabSim, which

lists the configuration settings of submodels on remote resources. An example of a user-specified

BAC YaML file is given in the Annex of Deliverable 3.2. Information specific to ComPat (and not

required by FabSim) can also be added to this file, including restrictions on the submodel (GPU / CPU

compatibility, max / min number of cores, etc.). This allows submodel information to be reused if it is

required for different multiscale applications. A “-y” command line flag to the python script is used to

indicate that a FabSim compatible YaML file can assist the completing of matrix.xml and

multiscale.xml.

In the same manner as described for the ES pattern, the jMML tool will produce a taskgraph which

can be visually inspected by the end-user. Currently this is the taskgraph within a single replica. The

python script, using the xMML description and the YaML file, will generate a matrix.xml and

multiscale.xml file. The fields within each field are completed using the YaML file or by the user, as

appropriate. As in the ES pattern, performance information is currently entered into matrix.xml by the

user, but in future this will be added automatically using the tools provided by WP 4. An example of a

complete matrix.xml and multiscale.xml for the BAC is given in the Annex to Deliverable 3.2.

Following the procedure outlined above for the ES pattern, the user passes matrix.xml and

multiscale.xml to the patterns performance service. Unlike the ES pattern, the user does not need to

specify the required number of cores for the overall simulation. This is decided by the patterns

performance service by calculating the cost function, described below.

2.4.3.1 Cost function(s)

Finding a cost function for RC that will allow to generate resource allocation plans is quite different

then for ES. First, there is an obvious trade-off between the number of replicas that must be executed,

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 22 of 24

the minimum number of cores that one single replica needs, and the total number of cores available for

the overall job. Moreover, most of supercomputers have a limit constraint on the job queue so it is not

allowed to run more than a certain number of replicas per user. The performance data for RC uses the

minimum time per replica for different node types in different hosts, as shown in Figure 10 for a single

BAC replica. In the simplest model, where we consider only time to solution, all replicas would be run

concurrently on the node with the shortest running time per replica. However, there are several

constraints that the patterns performance model must also consider, and we are currently developing

more sophisticated models to reflect these constraints.

Most supercomputers have a limit on the number of jobs that can be run/queued at any moment in

time. For example, on SuperMUC, the maximum number of jobs that can be run concurrently on the

thin nodes in the “general” queue is 8, while there are no restrictions on the Eagle machine at PSNC.

Figure 10: Time and efficiency per replica on different number of processors on different node types

As an example, if we have two RC applications which require 40 and 80 replicas respectively, the

pattern performance model needs to calculate which is faster: running all replicas at one

supercomputer supermuc (while taking into account the constraint of concurrently running 8 jobs per

user) or distributing the jobs among different hosts, for example, across supermuc and eagle, using the

functionality in QCG to run across multiple resources. To illustrate how this could be coordinated, let

us take the hypothetical situation that there is also a 12 job limit on concurrent jobs running on Eagle.

In Figure 11, we show the time to completion as a function of the number of “batches” running on

supermuc, where a “batch” is defined as a set of 8 concurrent running jobs on supermuc. The

remainder of the replicas are run on Eagle (again in “batches” of up to 12 jobs).

Figure 11 shows that for 40 replicas, the shortest time to completion is for 2 “batches” to be run on

supermuc, while for 80 replicas, the minimum time to completion is for 4 “batches” to be run on

supermuc. It is clear there is a limitation to this model; it will only be realistic if the time spent in the

queue is very short. Otherwise, the time to completion could be very different to that predicted in

Figure 11, and we could envisage the most efficient split in replicas across resources being completely

changed if the queuing times are very different across the resources. In the next phase of the project,

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 23 of 24

we will investigate ways to estimate queuing times and to incorporate them into the performance

model. It is obviously highly non-trivial to accurately estimate queuing times and we will judge

whether historical data (average queueing times, for example) is sufficient to formulate the most

efficient split across resources.

Figure 11: Time of running multi-replicas simulations across 2 resources (supermuc and eagle), as a

function of number of “batches” (i.e. sets of 8 concurrent jobs) on supermuc. The remainder of the

replicas are run as batches of up to 12 concurrent jobs on eagle.

Another scenario that could increase efficiently is an array style job, which involves running multiple

jobs using a single job submission. In this situation, the limitation on the number of concurrent jobs on

a single resource could be overcome. This functionality is currently under development in WP5.

2.4.4 Heterogeneous Multiscale Computing

The HMC pattern has not yet been implemented in the pattern service. However, note that with the

realisation of the RC pattern in the pattern service, and the related QCG functionality most key

functionality to implement HMC is available. During the next phase of the project we are now in the

position to also realise HMC.

2.5 Plans for phase 2 (M18-M36) of the project

So far we have implemented a first version of the multiscale computing patterns and algorithms

software and applied it for Extreme Scaling and Replica Computing examples. In the second phase

of the project we will enhance the capabilities of the software (with more advanced cost functions,

taking into account more scenarios, but also energy awareness and fault tolerance), implement the

Heterogeneous Multiscale Computing patterns, implement hybrid patters, and in collaboration with

WP3 instantiate all ComPat applications using the multiscale computing patterns software, and then

ComPat - 671564

[D2.2 First Report on Multiscale Computing Patterns and Algorithms] Page 24 of 24

carry out in depth performance measurements, demonstrating the capabilities of the patterns, and

their benefits.

3 To Conclude
We have described in some detail the activity in WP2 in M13-M18 of the ComPat project, showing

the design of the multiscale computing patterns and algorithms software, describing its current

implementation and showing some of the main features and capabilities of the multiscale computing

patterns software. With this deliverable we have reached Milestone 8 (Month18): First prototype of

the ComPat multiscale development and execution environment. First version of MML specifications

of Multiscale Computing Patterns. We believe WP2 is well on track we well equipped for the second

phase of the project.

