
 ComPat - 671564

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 671564.

Deliverable 4.1: Report and software on

design of tools and required actions to support

performance tools for multiscale

Due Date September 2016

Delivery Month

Lead Partner Allinea Software Ltd.

Dissemination Level Confidential

Status Final

Approved Executive Board yes/no

Version V1.3

ComPat - 671564

 Deliverable 4.1 Page 2 of 20

DOCUMENT INFO

Date and version number Author Comments

18.07.2016 v0.1 Keeran Brabazon Outline of the report with

headings of main sections

08.08.2016 v0.2 Keeran Brabazon Draft content for Allinea

checking

12.08.2016 v0.3 Keeran Brabazon Updates from Allinea feedback

18.08.2016 v1.0 Keeran Brabazon Draft for Work Package 4

members

05.09.2016 v1.1 Keeran Brabazon Update after Work Package 4

review

06.09.2016 v1.2 Keeran Brabazon Update after PSNC comments

26.09.2016 v1.3 Keeran Brabazon Final draft

CONTRIBUTORS

Contributor Role

Dirk Schubert WP4 Contributor, WP4 Leader

Keeran Brabazon WP4 Contributor

Stephan Hachinger WP6 Contributor

Vytautas Jancauskas WP6 Contributor, WP6 Leader

Tomasz Piontek WP5 Contributor, WP5 Leader

Piotr Kopta WP5 Contributor

Saad Alowayyed WP3 Contributor

ComPat - 671564

 Deliverable 4.1 Page 3 of 20

TABLE OF CONTENTS

	
1	 Executive summary ... 4	

2	 Debugging with Allinea DDT ... 5	

2.1	 Current State ... 5	

2.2	 Extensions .. 9	

3	 Profiling with Allinea MAP .. 12	

3.1	 Current State ... 12	

3.2	 Extensions .. 14	

4	 Performance Analysis with Allinea Performance Reports .. 16	

4.1	 Current State ... 16	

4.2	 Extensions .. 17	

5	 Conclusions ... 18	

6	 Annexes ... 19	

6.1	 Allinea Commands ... 19	

7	 References ... 19	

LIST OF TABLES AND FIGURES
Table 1: List of command line prefixes for launching Allinea tools... 19	

Figure 1: An interactive DDT session. .. 6	
Figure 2: An offline report contains information captured during an application run. 7	
Figure 3: Structure of a remote interactive debugging session on an HPC resource. 8	
Figure 4: Each application in a multiscale simulation is controlled in a separate GUI. 9	
Figure 5: QCG master runs an application on an external HPC resource. .. 10	
Figure 6: QCG launches applications on different resources. .. 11	
Figure 7: Future development will bring closer interaction between QCG and DDT. 11	
Figure 8: Example of a MAP profile. .. 13	
Figure 9: Example of a view on a web interface for displaying information from a multiscale simulation. 15	
Figure 10: Selection of a Performance Report. .. 17	

ComPat - 671564

 Deliverable 4.1 Page 4 of 20

1 Executive summary
This document summarises the work done so far in the design of the parallel debugging and

performance analysis tools to be used in ComPat. As per the Description of Actions (DoA), work so

far has focussed on the gathering of requirements for the tools from project partners, as well as their

high level design (see Tasks 4.1-3) such that they can be used in an effective manner in the

development of multiscale simulations. The tools used as part of ComPat are provided by Allinea

Software Ltd., and for the remainder of the report any mention of ‘tools’ implicitly refers to Allinea

tools. The work performed so far has been on target with the timeline in the DoA. In particular, this

document serves as proof that “Milestone 4: Completion application and pattern / framework design”

has been completed.
 Task 4.1 is responsible for the gathering of requirements from users and the design of an

architecture for debugging and profiling multiscale applications. The requirements gathering phase has

been completed, as well as the initial architecture of solutions. The requirements gathered are

discussed in this document alongside a description of how the current architecture supports the

development of multiscale applications, and how extensions to the current architecture will support

software development in a multiscale environment. Mention is made how the tools have already been

used as part of the project.
Tasks 4.2 and 4.3 (Energy and Performance Profiling and Expert Advice) have begun and are

in an investigative phase in order to establish the feasibility of proposed solutions and strengthen the

design of product extensions.
 The tools are mostly to be used by application developers part of Work Package 3, and the

design of extensions to the tools focusses on their requirements. Application developers are to develop

patterns outlined in Work Package 2. Discussion with Work Package 2 members has helped to identify

general application workflows that need to be supported by the tools. This includes debugging and

profiling of single scale models, scale bridging components, as well as entire multiscale simulations.

This will support performance and energy analyses of the ComPat applications and will be used to

verify performance prediction models developed.

Middleware services developed in Work Package 5 are to be used to enable communication

between component applications in a multiscale simulation. Allinea tools are to be integrated with the

middleware services as part of the project, so close collaboration with Work Package 5 will be

maintained. Requirements have also been gathered from Work Package 6, which defines the platforms

and systems on which Allinea tools need to run, as well as software which the tools depend on.
 The rest of the report is structured as follows. Chapters 2-4 introduce the tools to be used in

ComPat. This starts with a discussion of how the tools can be used in their current state, and describes

extensions necessary to meet the requirements gathered. Chapter 5 concludes the report and provides a

summary of the progress and achievements obtained so far.

ComPat - 671564

 Deliverable 4.1 Page 5 of 20

2 Debugging with Allinea DDT
In this chapter the parallel debugger Allinea DDT (from now on DDT) is introduced. We start with a

description of the current design and functionality of the debugger. Focus is kept on the application of

the debugger in a multiscale environment, where support is required for simultaneously debugging

multiple applications as part of a multiscale simulation. Areas are identified where functionality of the

debugger can be extended to give further support to debugging multiscale simulations. The new

functionality is described alongside existing functionality where appropriate. New functionality not

related to existing functionality is outlined in Section 2.2.

2.1 Current State

DDT is a highly scalable parallel debugger. It allows for high performance codes written in C/C++ and

FORTRAN running an MPI and/or OpenMP and/or CUDA model of execution to be debugged. For a

detailed description of how to run and use the tools please see the Allinea DDT User Guide [1]. DDT

is designed to be easy to use, without requiring recompilation or linking of code (assuming that the

debug flag has been set, and optimisations have been turned off) on all current HPC systems where

dynamic linking is available.

A debugging session can be interactive or offline. In order to start a debugging session it is

simply required to prefix a small amount of text to the start of the command line used to run an

application. For example, if a parallel application is launched as follows:

$ mpirun -n 256 ./parallel_program

then in order to start an interactive debugging session the command line would change to:

$ ddt mpirun -n 256 ./parallel_program

A list of commands used to start Allinea tools can be found in Table 1 An interactive debugging

session requires user interaction and the user has complete control over the processes used in a multi-

process application. An example of an interactive debugging session is given in Figure 1. The

program being debugged is using approximately 25 thousand cores. Due to the scalable nature of the

product, both the debugger and the underlying application remain responsive. This makes the tool very

useful in debugging large applications run on a single HPC facility.

ComPat - 671564

 Deliverable 4.1 Page 6 of 20

Figure 1: An interactive DDT session. This is only part of the rich interface. It is possible to see in the
panes (left to right, top to bottom): File browser for files; Code viewer for source code being debugged;
Values of variables on the current line / stack; Stack frames for processes; Evaluation of native code
expressions.

An offline debugging session can be used to record debug information, such as stack traces at program

crashes, when tracepoints and breakpoints are hit, or common memory errors such as leaks and out of

bounds accesses are detected. An offline debug report is generated which can be viewed at a later date.

The underlying tool is the same, but no graphical user interface is required. An example of an offline

debugging report is given in Figure 2.

 Debugging is often performed on a remote system, where users launch applications from a

shared login or batch node, where X-forwarding is not available or slow. In this case, it is not usable to

start an interactive debugging session directly on the remote system. Therefore, a feature of Allinea

DDT called Reverse Connect (see Section 3.3 [1]) is required in order to control the flow of a

debugged program from their own system, which is likely to be their workstation or laptop. The

mechanism used for this is important for the design of integration with the ComPat middleware

services developed in Work Package 5, and so is outlined in Figure 3. As can be seen in Figure 3, a

GUI running on a user system communicates with a remote system via an ssh tunnel. This does not

impact on the performance of the debugger from a user perspective.

ComPat - 671564

 Deliverable 4.1 Page 7 of 20

Figure 2: An offline report contains information captured during an application run. This selection shows

part of a debug report in which leaked memory is reported to the user. Memory errors, program crashes

and many other common problems can be diagnosed from an offline log.

Discussion so far has focussed on debugging a single multi-process application. In a multiscale setting,

in particular that presented in ComPat, the tools may already be put to good use. When interactively

debugging a multiscale simulation it may be desirable to debug more than a single application (or

submodel). It was considered whether this should be possible to perform from within a single DDT

GUI instance. However, the richness of the information presented to the user is likely to make it

difficult to separate which information is related to which application being debugged. Instead, the

natural separation provided by launching multiple applications will be maintained, and the user will be

responsible for debugging individual applications and submodels in separate GUIs, as depicted in

Figure 4.

ComPat - 671564

 Deliverable 4.1 Page 8 of 20

Figure 3: Structure of a remote interactive debugging session on an HPC resource. In order that the GUI
on a user machine can control program flow on the HPC compute nodes, the GUI application sends (via
ssh) commands to a process running on the HPC login node. Commands are forwarded to DDT instances
on the compute nodes. Effects of executing the command are sent back to the user through the
management process on the login node.

With respect to offline debugging, it is possible to generate offline debug reports for all applications

run as part of a multiscale simulation. A user may then investigate the debug reports after their run has

completed. It may also be the case that a subset of applications is desired to be debugged. If a user

knows which subset of applications to generate debug reports for, they may specify this before

launching their simulation. In particular, this is applicable to the Extreme Scaling and Replica

Computing patterns described in Deliverable 2.1. It could be the case that there are hundreds, or

thousands, of applications executed as part of a multiscale simulation that fit into these patterns. From

discussions with users in Work Package 3 it is evident that it is important to be able to gather detailed

information regarding a crash that occurs in one (or only a few) applications. Generating a debug

report for many thousands of applications will not provide the user with salient information.

Therefore, Allinea will introduce the capability of monitoring debugged runs, and only generating a

debug report when some user defined condition is met. For example, only generating a report when a

crash occurs, or when a tracepoint is triggered. In the absence of needing to check program internal

state (such as the triggering of a tracepoint) a lightweight monitoring tool can be employed to check

when an application crashes, at which point a stack trace and debug information is gathered. For an

initial implementation, though, conditions will be identified in which a debug report should be

generated whilst full program state is monitored. This will give a larger overhead in terms of run time,

but will provide users with a solution for viewing a manageable subset of debug data.

ComPat - 671564

 Deliverable 4.1 Page 9 of 20

Figure 4: Each application in a multiscale simulation is controlled in a separate GUI.

2.2 Extensions

In ComPat, middleware services developed in Work Package 5 are responsible for the launching of

applications on remote HPC facilities. It is therefore necessary to consider how a debugging session

can be launched with the use of the ComPat middleware stack. Two tools used in ComPat – QCG [2]

[3] and FabSim [4] - are able to control the flow of control of a multiscale simulation. Section 2.2.1.2

of Deliverable 5.1 states that FabSim is to be integrated into QCG, so that here we only consider

integration of Allinea tools with QCG. The design for integrating QCG and DDT is applicable also to

the profiling tools outlined in Chapters 3 and 4. The next section therefore presents the interaction for

all Allinea tools with QCG, which is introduced in Section 2.4.1 of Deliverable 5.1. In the following

discussion it is assumed that any HPC resource on which an application can be submitted by QCG has

Allinea tools installed. As part of the project this is a fair assumption, and the tools are already

installed on-site at PSNC, STFC and LRZ.
 For integration of Allinea tools with QCG we firstly consider how Allinea tools will be

launched by QCG. The commands outlined in Table 1 will need to be prepended to command line

arguments for user applications. It has already been tested that debugging and profiling sessions can be

started in this manner by manually inserting the commands into scripts submitted to QCG. In future

work, a user may request a debugging or profiling session to begin, and QCG will inject the Allinea

commands automatically. It is therefore required for Allinea to supply QCG developers with

documentation for the correct syntax for starting runs. This will be of a similar form to the first

column of Table 1.

 As well as launching debugging and profiling runs on remote systems via QCG, it is necessary

to collect data that are generated and return these to the user. Additionally, Allinea would like to store

this information in a location for later access by the user. Figure 5 depicts the transfer of data between

QCG nodes, HPC resources and Allinea owned resources for this case.

ComPat - 671564

 Deliverable 4.1 Page 10 of 20

Figure 5: QCG master runs an application on an external HPC resource. Knowledge of how to run
Allinea tools and collect output files is provided to QCG. A post processing phase on the QCG master
node allows for Allinea output files to be transferred to an Allinea owned resource. A user may access
Allinea data generated from this resource.

In addition to the documentation for launching jobs, Allinea will also need to specify the names of any

output files that are generated that need to be transferred back to the QCG node, as well as defining a

mechanism for forwarding on data to an Allinea owned resource. Step 3 outlined in Figure 5 is

planned to be performed through the use of an Allinea script, which is to be run on the QCG host node

upon completion of the user application and transfer of Allinea data from an external resource. In

order that the script can be run at the correct time, it will be necessary for monitoring of the QCG-

Client to check for its completion. This monitoring can be done via a script which will be developed in

collaboration between Allinea and PSNC partners. A database is likely to be in the Allinea owned

location where files are transferred to. This will be efficiently queried regarding the execution of the

multiscale simulation, having stored summary data from Allinea output files (profiles and offline

debug reports). Links to the Allinea files will be maintained in the database, allowing access via the

database. Figure 5 depicts the flow of data when an offline debugging or profiling run is performed.

In the case that an interactive debugging session is required, a slightly different approach is taken. An

initial design is depicted in Figure 6.

In the scenario depicted in Figure 6 data is not required to be transferred back to the QCG

host in an interactive debugging session. QCG will only start applications on the requested resources,

and a user is responsible for connecting the applications to instances of the debugging GUI from their

own machine. As the project progresses, closer integration with QCG is desired. In particular, the use

of a feature of QCG called QCG Connect may enable a user to interactively debug applications

without the need to know which system those applications have been submitted to. QCG Connect

ComPat - 671564

 Deliverable 4.1 Page 11 of 20

allows for an interactive session to be established with a running task which was submitted via QCG.

This is done by starting a shell session in the working directory of the task, from which any

application can be started. All standard input and output streams are forwarded from the shell session

to the QCG host, from where Allinea tools can capture this stream and use it for their own purposes.

This is depicted in Figure 7.

Figure 6: QCG launches applications on different resources. User connects DDT GUI to debug sessions
running on each resource requested.

Figure 7: Future development will bring closer interaction between QCG and DDT. QCG Connect is used
to create a connection to remote resources. A user then only has to connect a GUI to the QCG Host.

The features described in this section will simplify the process of debugging applications in a

multiscale setting. The extensions to offline debugging allow for the fast identification of unexpected

behaviour within a subset of applications run as part of a multiscale simulation. The integration of the

ComPat - 671564

 Deliverable 4.1 Page 12 of 20

startup of interactive debugging sessions with QCG allows for a convenient method of controlling all

or part of a multiscale simulation at run time.

3 Profiling with Allinea MAP
In this chapter the parallel profiling tool Allinea MAP (from now on MAP) is introduced. Section 3.1

describes how existing functionality is already applicable for developers of multiscale simulation

codes. Section 3.2 outlines planned extensions to the profiling tool in order to better support the

development and optimisation of multiscale simulations.

3.1 Current State

MAP is a parallel profiling tool which gives a breakdown of the recorded activity during a program

run for programs written in C/C++ and FORTRAN. Figure 8 shows sample output from MAP,

presented in the MAP GUI. Rich data is provided to the user and breaks a program down into CPU,

I/O and MPI activity. Statistical sampling is used to inspect program state at irregular intervals.

Samples are taken such that statistically significant events that occurred during a program run are

observed, and a maximum of 1000 samples are reported to the user. This limit on the number of

samples limits the amount of data that are generated, and allows for profiling to be highly scalable.

MAP can be used currently in order to identify bottlenecks in single applications of a multiscale

simulation. This allows for components of a simulation to be optimised, which is likely to lead to a

more optimal multiscale simulation run. Work performed by partners at UvA as part of Work Package

2 has lead to a 30% efficiency gain in their single scale application modelling blood flow [5], and it is

from these runs that the screenshot in Figure 8 was taken. As well as being able to optimise the

performance of their code, MAP has enabled UvA partners to investigate the code in a third-party

library which they are using, but are not the developers for. The understanding gained has allowed for

third-party routines to be used in a more efficient manner.

ComPat - 671564

 Deliverable 4.1 Page 13 of 20

Figure 8: Example of a MAP profile. This was used by UvA partners to obtain a 30% increase in
performance of a single scale application. The application activity spread across the processes is displayed,
as well as attribution of measured time to individual functions and code lines.

Particularly salient for ComPat is the way in which MPI activity is reported in MAP. MPI is used for

communication between processes in a single scale application. The MUSCLE2 framework [6] (see

Section 2.4.1.1 of deliverable 5.1) is used for communication between processes in different

applications. For MPI, MAP shows the time spent and the amount of data transferred in MPI function

calls, which allows for intra-application communication patterns to be analysed and optimised. In

order to optimise inter-application communication, similar data regarding the time spent and data

volumes sent and received will also be reported for communication performed via MUSCLE2. From

discussion with Work Package 3 partners, the following have been identified as salient metrics,

although there is scope to add more if the need arises:
• Send rate (B/s) over MUSCLE

• Receive rate (B/s) over MUSCLE

• Time spent in MUSCLE function calls (s)

• The rate of MUSCLE function calls (calls/s)

As close collaboration with MUSCLE developers is maintained in this project, it is possible to change

the MUSCLE library in order to maintain accounting information for MUSCLE2 function calls. This

accounting information is to be read by MAP, but has the advantage of being available to users

without the need of attaching a profiling tool. An alternative would be to intercept the MUSCLE calls

through a profiling interface similar to that used in MPI, which again requires changes to the

MUSCLE source code. Interception of the calls is also possible without changing the MUSCLE source

code, although this approach would be more unstable than obtaining profiling data directly from the

ComPat - 671564

 Deliverable 4.1 Page 14 of 20

library. Collaboration with MUSCLE developers has started, and it is expected that a prototype of

reporting on the use of MUSCLE will be available by December 2016.

 MAP will also be used in the project in order to monitor the energy usage of programs at run

time. There are several possible sources for energy metrics from MAP, which are Intel’s RAPL

(Running Average Power Limit) on CPU counters and IPMI energy sensors. In order that the energy

can be reported as part of ComPat it is required that all of the systems that are used can report the data

from either RAPL or IPMI to MAP and also to Allinea Performance reports (see Section 4). Work has

been performed in order to make sure that this information is available on the machines comprising the

Experimental Execution Environment (see Deliverable 6.2) which uses compute clusters in Poznan,

STFC and LRZ sites. On the Poznan system, an Allinea daemon which monitors system power has

been installed. This retrieves IPMI energy information. On STFC’s system work is ongoing in order to

provide IPMI energy information to Allinea tools. This may not be done via a standard interface, but is

going to be possible within the next few months. It may be necessary to report energy data out-of-band

via an SNMP interface. Collaboration between Allinea and STFC is tracking the progress of this.

Work at the LRZ system SuperMUC has resulted in the exposure of system monitored data being

written in a format that is accessible to Allinea tools. This means that all existing energy reporting

functionality will be available for programs run on all machines part of ComPat.

3.2 Extensions
In order to view all data related to a multiscale simulation, we propose a new interface for Allinea

products. Summary information regarding a program run is to be stored in a database, which can be

displayed to the user in graphical form through a web interface. The purpose of this interface is to

present overview data of a multiscale simulation to a user without presenting an overwhelming

amount. A subset of the data that is collected during the profiling of a multiscale simulation may be

displayed. This can focus on the interaction between the applications rather than exposing the entire

wealth of data collected to the user all at once. It is envisaged that the users will be able to configure

which subsections of the data to display and how. One possible format for displaying of data to the

user is shown in Figure 9, which takes the form of a graph. Other formats such as tables and lists may

also be appropriate. As well as the overview data, detailed data regarding individual application runs

will also be stored, with links to the locations stored in a database. Therefore, access to detailed

performance data – such as a MAP profile or Performance Report (see Chapter 4) – can be gained on-

demand.

Figure 9 shows an example graph for displaying a multiscale simulation to a user. This might

use the run time of each application, together with the amount of computational resources consumed.

This provides an overview of what application started and when, relative to others in the same

multiscale simulation. The data to be displayed are stored to and retrieved from a database.

Performance profiles with detailed data would be stored in a location accessible through a link stored

ComPat - 671564

 Deliverable 4.1 Page 15 of 20

in the database. As part of ComPat, data and files to be stored would be exported to a database node in

the manner depicted in Figure 5.

Alternatives for the displaying of multiple MAP profiles, such as merging these in the same

interface similar to that shown in Figure 8 have been considered and rejected. Due to the richness of

the MAP interface it would be difficult for a user to differentiate data from different applications, even

for a modest number of applications. Another advantage of the approach proposed above is that it is

not required for detailed information to be gathered for every application in a multiscale simulation in

order to obtain high level overviews. These overviews already reveal interactions between different

applications. With this in mind, Allinea plans to develop a lightweight sampler which records reduced

information regarding a program’s execution. This is to be a new product designed for minimal

impact, whilst recording as much detail as possible. This will not provide insight into what actions an

application is performing, but can be used to record the amount of data sent and received via MPI or a

filesystem, as well as run time and resources consumed. Investigative work in this respect has already

begun, and a prototype is anticipated before Milestone 16.2 (see Description of Actions) in Month 30,

which is for a second release of the Profiling and Debugging tools.

Figure 9: Example of a view on a web interface for displaying information from a multiscale simulation.
The area of the blocks represents the core hours used by an application. Selecting an application allows
access to more detailed information (including MAP profiles, Performance Reports and offline debug logs,
if available).

Collecting information on the performance of MUSCLE calls within an application is an extension

which has been discussed in the previous section. With this, it is possible for users to see for each

individual application how efficiently they are using inter-application communication. The overhead

(i.e. time spent waiting on communication to complete) depends on the performance of other

ComPat - 671564

 Deliverable 4.1 Page 16 of 20

applications, so this information should be considered within the context of an entire multiscale

simulation.

4 Performance Analysis with Allinea Performance Reports
In this chapter, the parallel profiling tool Allinea Performance Reports (from now on Performance

Reports) is introduced. Section 4.1 describes how existing functionality is already applicable for

developers of multiscale simulations. Section 4.2 outlines planned extensions to the profiling tool.

4.1 Current State

Performance Reports is a profiling tool which provides a summary of an MPI application run, as well

as advice on how to optimise, targeting areas that cause the largest performance bottlenecks. Part of a

Performance Report is shown in Figure 10. In addition to a summary of the time spent in parts of the

program performing CPU, MPI or I/O activity, a Performance Report will advise on which areas to

focus on, and what techniques to use in order to optimise performance. For example, in Figure 10 we

see that due to the high proportion of memory accesses it is advised that the user improve cache

performance. This information for a single scale application can be used as part of a multiscale

simulation run in order to inspect the performance of component applications. Optimisation of the

individual applications is likely to lead to better performance of the overall multiscale simulation.

ComPat - 671564

 Deliverable 4.1 Page 17 of 20

Figure 10: Selection of a Performance Report. A general overview of run time split into CPU, MPI and
I/O parts is displayed. A breakdown of time spent in CPU, MPI, I/O, memory, energy and OpenMP
performance is also given. Not all of this information is displayed in the figure to limit the length of the
output.

4.2 Extensions
The extensions to Performance Reports are similar to the extensions to the profiler MAP. Support for

reporting on inter-application communication via MUSCLE will be added to Performance Reports as

it is added to the profiler MAP. The advice that is given regarding how to improve the performance of

interactions across applications will develop as the understanding of efficient inter-application

communication emerges during the course of the project. Close interaction with the application

developers in Work Package 3 will be kept in order to develop this. Initial advice will be devised

through interaction with the pattern developers in Work Package 2.
 In order to view Performance Reports data as part of a multiscale simulation, access to a

Performance Report will be provided through a web interface, an example output of which is provided

in Figure 9. This is the same extension as described in the previous chapter for MAP. As part of the

ComPat workflow, Performance Reports are to be transferred to a location in which it can be retrieved

through the web interface via the mechanism depicted in Figure 5.

ComPat - 671564

 Deliverable 4.1 Page 18 of 20

5 Conclusions
This report has given an overview of how Allinea’s parallel debugging and profiling tools can be used

in a multiscale environment. A high level discussion of the design of extensions to the tools to increase

their efficacy for efficient software development in a multiscale environment has also been included. It

was found that support needs to be added for Allinea tools to be used through another application

interface (in this case the Work Package 5 middleware solution QCG). A new web-based user

interface is also to be designed in order to provide a subset of large amounts of information collected

during a multiscale simulation. Data is to be stored on a database node, with summary performance

and debugging data stored in, and queried from, a database. Access to detailed performance and

debugging information may be obtained upon request through this new interface. It is expected that a

functioning prototype of the web interface will be available by March 2017. This is in time to meet

Milestones 7 and 8.2, as outlined in Table 8 of the Description of Actions.
 The implementation of the design outlined in this report is to be completed by Allinea, as the

tools to be extended are owned by Allinea. If, during the course of ComPat, changes made to Allinea

products outside of the scope of ComPat (such as through Allinea’s support process) prove to be

useful within the scope of the project, these improvements will be made available as they are

developed. The design outlined here is an initial design which will be iteratively refined through a

series of prototypes in collaboration with project partners, in particular application developers from

Work Package 3. In terms of time scales for the completion of the extensions, initial plans have been

made for features that will be available in the next 12 months (year two of the project). A prototype of

the web interface (see Chapter 4) as well as the ability to conditionally generate offline debug reports

(see Chapter 2), and integration with QCG tools are to be delivered to meet Milestone 8.2 in March

2017. These features will be further developed, and discussion with project partners will drive the way

in which the usability and functionality is developed iteratively, which is to continue until month 24.
 All of the work performed so far has been on-budget and on-time. Progress is as expected, and

support will be provided for users as they begin to use the extensions to the tools when they become

available.

ComPat - 671564

 Deliverable 4.1 Page 19 of 20

6 Annexes

6.1 Allinea Commands

Command Line Prefix Purpose Output

ddt Start an interactive debugging
session with a GUI on the local
system

No output file generated

ddt --offline Start an offline debugging
session

HTML debug report generated

ddt --connect Start a debugger which will
connect to an available parent
process. This is used in order to
connect to a GUI running on a
remote system in a ‘Reverse
Connect’ procedure. See Section
3.3 of the Allinea DDT User
Guide [1] for more details.

No output file generated

map Start a profiling session in a
GUI on the current system

.map profile generated

map --profile Start a profiling session without
the need for a GUI

.map profile generated

perf-report Start a profiling session without
the need for a GUI

HTML summary profile
generated

Table 1: List of command line prefixes for launching Allinea tools, along with a brief description of files
that are generated.

7 References

[1] Allinea Software Ltd, “Allinea DDT User Guide,” [Online]. Available:

http://www.allinea.com/user-guide/forge/DDT.html#x8-27000II. [Accessed August 2016].

[2] B. Bosak, P. Kopta, K. Kurowski, T. Piontek and M. Mamoriski, “New QosCosGrid Middleware

Capabilities and Its Integration with European e-Infrastructure,” in eScience on Distributed

Computing Infrastructure, Switzerland, Springer International Publishing, 2014, pp. 34-53.

[3] Poznan Supercomputing and Networking Center, “QCG Home Page,” [Online]. Available:

http://www.qoscosgrid.org/trac/qcg. [Accessed August 2016].

[4] D. Groen, A. Bhati, J. Suter, J. Hetherington, S. J. Zasada and P. V. Coveney, “FabSim:

Facilitating computational research through automation on large-scale and distributed e-

infrastructures,” Computer Physics Communications, 2016.

[5] L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B. Chopard and A. G. Hoekstra, “Parallel

performance of an IB-LBM suspension simulation framework,” Journal of Computational Science,

ComPat - 671564

 Deliverable 4.1 Page 20 of 20

vol. 9, pp. 45-50, 2015.

[6] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, D. Groen, P.

V. Coveney and A. G. Hoekstra, “Distributed Multiscale Computing with MUSCLE 2, the

Multiscale Coupling Library and Environment,” Journal of Computational Science, vol. 5, pp.

719-731, 2014.

