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1 Executive summary 
The aim of this document is to provide an overview of the ComPat system architecture. In this document, 
we present the established technology stack and discuss the integration aspects of all parts of the 
ecosystem for building and executing multiscale applications based on the concept of High Performance 
Multiscale Computing (HPMC) patters. The ComPat architecture has been designed in close 
collaboration with Work Packages 2 (Patterns), 3 (Applications),  4 (Tools) and 6 (Experimental 
Execution Environment, EEE). Based on our in-depth analysis, supported by questionnaires completed 
by the relevant Work Packages and following the generally accepted methodology of software design 
and development, we decided to divide the architecture into several logical layers, namely high-level 
tools, applications, computing patterns, middleware and execution environment.  These layers, their 
components, as well as the relations between them, are the main subject of this document. 
The ComPat project distinguishes between fast track and deep track components. Therefore, this 
document also presents an internal schedule for developing new components and describes how their 
functionalities are related to the project’s objectives. The components assigned to the fast track are 
designed to be deployed in the first phase of the project to enable basic functionality of the overall 
system, while the deep-track components will be deployed subsequently to support more sophisticated 
scenarios. The assignment of components into the deep track is only possible if the implementation and 
deployment of such components can be scheduled for later in the project without causing problems with 
dependencies between tasks in the Work Packages.   
The ComPat project builds upon the achievements of earlier developments wherever possible and 
justified. Thus, in addition to completely new software that will be implemented during the project, a 
number of previous or complementary software components are also incorporated into the architecture. 
This document provides a clear distinction between new ComPat components and those which have 
been developed externally. For the existing components the required adaptation effort is described.  
This deliverable presents the starting point for all subsequent technical developments in ComPat, and 
therefore represents an important early milestone in the project. 

2 ComPat system architecture 
It is not trivial for computing systems’ designers to address the ever-changing requirements of leading-
edge science. Advanced multiscale simulations, benefiting from the concept of HPMC patterns, have to 
be supported by a dedicated, flexible and well-defined system. In this document, we present the design 
of the ComPat environment and describe how the environment addresses these requirements. The 
information provided here discusses the basics of integration between the main ComPat layers, i.e. high-
level tools, applications, computing patterns, middleware and execution environment, and, as such, this 
deliverable will be an essential design document for all the technical Work Packages. By preparing this 
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document in the first phase of the project, we align the work and roles of the project participants as early 
as possible.  
In order to develop an architecture that fully meets the requirements of applications on the one hand, 
and takes all circumstances of the underlying HPC infrastructure into account on the other, the work on 
the architecture design was started by tabling two relevant questionnaires (Annex A, B) to the relevant 
ComPat technical Work Packages. The first questionnaire was targeted at groups involved in application 
design (Work Packages 2 and 3). The target audience of the second questionnaire were resource 
providers represented by Work Package 6. The aim of these two questionnaires was to identify, in 
advance, all the required functionality foreseen by applications and to determine all the procedural, 
administrative and technological limitations in accessing resources. Using the received feedback, we 
were able to propose a complete and stable system architecture, which is presented below. Nevertheless, 
taking into account the explorative and emerging character of the project, it must be noted that the 
proposed architecture may be slightly altered during the next stages of the project. However, we do not 
expect any significant changes to its core design. 

2.1 General view on the ComPat architecture 
Since ComPat is an application driven project, the successful creation and execution of our grand 
challenge applications is of the utmost importance for the success of the project, as well as facilitating 
a qualitative verification of the (potential) impact of ComPat innovations. This fact was taken into 
account when the ComPat consortium defined three general multiscale computing patterns (Extreme 
Scaling, Heterogeneous Multiscale Computing and Replica Computing) as a generic layer between the 
applications and the (emerging) exascale computational environment. The main aim of the construction 
of such patterns (the so called HPMC patterns) is to simplify the implementation of HPC multiscale 
applications and to variously enhance their execution. From the point of view of the applications, the 
patterns determine the ordering and composition of the single scale models that are coupled within a 
multiscale application. It is foreseen that the patterns, by providing well-defined functionalities for 
common requirements of multiscale scenarios, e.g. fault tolerance or support for energy-aware 
execution, will allow to reduce the “time to market” and enhance the applications’ stability and 
performance. We further discuss this, and provide examples from our grand challenge applications, in 
Section 2.3. 
In order to orchestrate the execution of the pattern-based application on HPC resources and specifically 
exascale systems, we require a comprehensive middle- and low-level technology stack. The architecture 
of the ComPat system has to support and correspond to the typical scheme of development and execution 
of multiscale applications, as presented in Figure 1. This scheme is based on practices worked-out in 
earlier projects, particularly in MAPPER, and enriched with modules required for High Performance 
Multiscale Computing (most notably, Multiscale Computing Patterns, energy awareness, and 
debugging/profiling). We can distinguish here between the development of patterns, single-scale 
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application kernels and the combined development of entire multi-scale applications. As shown by the 
thick arrows, the process of development is organized into loops. The undoubtable advantage of the 
scheme is the possibility of working in parallel by different ComPat Work Packages.  

 
Figure 1 ComPat’s multiscale application development and execution loop 

 
Nevertheless, since the execution of a multiscale application on the EEE, together with its optimization, 
is an integral part of its development, it is necessary for the project to provide unified access to the 
execution environment as soon as possible. Therefore, it was decided to distinguish between fast-track 
and deep-track components. The components assigned to the fast track are required to be deployed in 
the first phase of the project, even with limited functionality, to enable basic operation of the overall 
system, while the group of the deep-track components will be deployed subsequently to support more 
sophisticated target scenarios. The assignment of components into fast-track and deep-track 
development is provided in Table 1. 
In Figure 2 we present the general ComPat architecture. The ComPat technology stack is composed of 
tools, applications, computing patterns, middleware services, and the exascale multiscale simulation 
framework, fully operational on an Experimental Execution Environment, consisting of HPC/PRACE 
resources throughout Europe. Whenever possible, the ComPat technology stack benefits from the 
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existing software components and achievements of previous or complementary projects. Thus beside 
the completely new developments needed to meet the specific demands of the multiscale computing 
patterns and/or the requirements and demands related to exascale performance, there are also mature 
components incorporated into the ComPat architecture that with or without modification compose the 
whole system. A summary presenting all components on the basis of their origin and required 
development effort within the ComPat project is shown in Table 2. 
 

 
Figure 2 General ComPat architecture. New components are in pink, the existing components that will be 

modified in some way are in orange, and the existing components that will not be altered in any way are in grey. 
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Layer Fast Track Deep Track 
Tools QCG-Client Tools (QCG-Client) 

Single-scale Debuggers & 
Profilers 
FabSim 

QCG-Client Tools (QCG-Portal, 
QCG-Now) 
Monitoring 
Multi-scale Debuggers & 
Profilers 

Applications 2 selected applications, to be 
decided 

6+ applications 
Application libraries and 
toolkits 

MPI,  OpenMP, CUDA, OpenCL ADIOS, ECOL 
Patterns ES 

RC 
HMC 

Patterns’ libraries MUSCLE 
MUSCLE-HPC 

MPWide 
AMUSE 

Patterns’ services 
 
 

 Pilot Jobs 
HMM Manager 
On-the-fly Database 

Middleware Job & Advance reservation 
manager (QCG-Computing) 
Scheduler and resource co-
allocator (QCG-Broker) 
GridFTP 
MTO 

Workflow manager 
Energy-aware scheduler and 
resource co-allocator 
ECOS 

EEE 3 selected resources 5+ resources 
Table 1 Division of ComPat components into fast-track and deep-track groups 

 
 

 Component Origin Development effort in ComPat 

Too
ls 

QCG-Client tools External (QCG) Adaptation to the requirements of 
ComPat patterns 

FabSim External  Integration with other ComPat tools 
and adaptation to support the 
requirements of the patterns. On-
demand adoptions by Brunel 
University 

Monitoring External (QCG) Support for new application types 
HPMC Code Generators ComPat Development from scratch 
Debuggers External (Allinea) Extensions to support debugging of 

multi-scale simulations 
Profilers External (Allinea) Extensions as well as new 

development to support profiling of 
multi-scale simulations 

Performance Prediction 
Models 

ComPat Development from scratch 

Ap
plic

atio
ns ISR External (UvA) Support for hybrid ES/RC patterns, 

porting to EEE machines, 
performance monitoring and 
modelling 

RBC and Platelet transport External (UvA) Development of MUSCLE wrappers 
and scale bridging, porting to EEE 
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machines, performance monitoring 
and modelling 

Blood Rheology External (UvA) Development of MUSCLE wrappers 
and scale bridging, porting to EEE 
machines, performance monitoring 
and modelling, development and 
testing of required HMM database 
functionality. 

Binding Affinities External (UCL) Support for RC jobs, including testing 
of Pilot Jobs and porting to EE 
machines. 

Nanomaterials External (UCL) Development of scale bridging 
methods (model building / 
parameterisation etc) support for 
HMM database functionality 

Aneurysm flow dynamics External (UCL) Development of MUSCLE wrappers 
for coupling high-to-low resolution 
simulations as part of Extreme Scaling 
pattern, performance monitoring and 
modelling, decomposition based time-
to-solution prediction. 

Fusion External (IPP) Development of MUSCLE wrappers 
and scale bridging methods, porting, 
performance monitoring and scenario 
optimization on EEE machines. 

Astrophysics  External (Leiden)  Integration of performance 
monitoring and modelling with 
AMUSE and MPWide. 

Ap
plic

atio
ns’

 lib
rari

es Parallel I/O Library 
(e.g. MPI-IO, ADIOS) 

External  - 
MPI (e.g. OpenMPI) External - 
OpenMP External - 
CUDA External - 
OpenCL External - 
ECOL ComPat Development from scratch 

Pat
tern

s ES ComPat Development from scratch 
HMM  ComPat Development from scratch 
RC ComPat Development from scratch 

Pat
tern

s’ l
ibra

ries
 MUSCLE2 External (MAPPER) porting and testing on EEE, merging 

with MUSCLE-HPC, extending with 
dynamic instantiations of single scale 
models 

MUSCLE-HPC External (University 
of Geneva) 

Merging with MUSCLE2 
MPWide External (MAPPER) - 
AMUSE External (University 

Leiden) 
Support for HPMC Patterns 

Pat
tern s’ ser
vic

e Pilot jobs External Support for specific HPMC Patterns 
needs 

HMM Manager ComPat development from scratch 
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On-the-fly Database ComPat development from scratch 
Mi

ddl
ew

are
 ser

vic
es 

Energy aware scheduler & 
resource co-allocator 

External (QCG) Incorporating energy-metrics into 
scheduling process 
Support for patterns-based 
applications 

Job & advance reservation 
manager 

External (QCG) Support for patterns-based 
applications 

Workflow manager External (QCG) Support for patterns-based 
applications, 
Fault tolerance issues 

Data transfer External - 
ECOS ComPat Development from scratch 
MTO External (MAPPER) Possible rewrite to support new 

scenarios 

EE
E Several resources of peta-

scale class 
External (PRACE 
resources) 

Configuration supporting multi-site 
execution of ComPat jobs 

Table 2 The list of ComPat software components with respect to their origin and development effort needed to 
incorporate them into the ComPat stack. The same colour scheme is used as in Fig. 2. 

 
In the following sections we discuss all the layers of the ComPat architecture one by one. A special 
focus is given to relations between elementary components and their role in the system.  

2.2 Tools 
The aim of the ComPat tools is to offer wide support for users in the process of development and 
execution of multiscale applications. We define the following generic groups of tools:  

- application submission and monitoring tools, 
- pattern-based code and/or input files generators, 
- application debuggers and profilers, 
- performance prediction models. 

In the following subsections we present all of these groups. 

2.2.1 Application submission and monitoring tools 
To execute jobs on the ComPat resources several submission and monitoring tools are offered. At this 
stage of the project, the scope of functionality provided by the selected tools is sufficient for execution 
of basic multiscale jobs. This was validated in a previous project (MAPPER). However, we anticipate a 
number of extensions to the tools and formal description languages in order to fulfil the specific 
requirements for High Performance Multiscale Computing, i.e. support for extensions in the Multiscale 
Modelling Language (MML) description to handle patterns and energy-efficiency constraints, fault 
tolerance in exascale environments or flexible monitoring of the progress of running application. 
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2.2.1.1 QCG submission tools 
The underlying QCG system has a set of dedicated access tools, including command-line, desktop and 
portal-based versions. We anticipate that the command-line QCG-Client, together with the supporting 
FabSim tool described in the next section, will be the primary access tool for the whole project. Taking 
into account preferences expressed by ComPat users as well as the complexity of selected multiscale 
applications, we do not expect, certainly in the first phase of the project, the need to use any graphical 
interfaces.  
The QCG-Client, is a set of command-line tools, inspired by batch system commands, which allow a 
user to submit, control and monitor a large number of various types of grid jobs as well as to reserve 
resources to obtain a requested level of quality of service. Since the QCG-Client’s user interface is 
analogous to common batch systems’ interfaces, the effort needed to start using the tool is relatively 
small. To be processed by QCG, tasks have to be described in a formal way. The basic description 
format, called QCG-Simple, is preferred and sufficient for a majority of tasks. However, it does not yet 
allow users to describe more sophisticated scenarios like workflows or tightly-coupled multi-scale 
simulations. This format will be extended appropriately in the next phases of the project. For now, all 
advanced scenarios supported by the QCG middleware have to be described by using the native XML 
based format, called QCG-Profile, that also will be slightly extended to support project goals. It is worth 
noting that QCG-Client provides valuable support for interactive access to resources if only a resource 
exposes this capability. Thus, depending on their particular needs, users can easily submit an interactive 
task to a cluster and either run their command line applications in interactive mode or compile their own 
code and process some debugging sessions directly on computing nodes.  

2.2.1.2 FabSim 
FabSim [1] is a Python-based automation toolkit for scientific simulation and data processing 
workflows. It enables users to perform remote tasks from a local command-line, and to run applications 
while curating the application data in a systematic manner. FabSim also contains a system for defining 
machine specific and application-specific configurations, with frequently used default settings being 
curated through a GitHub repository. FabSim is currently in use across several universities to automate 
computational tasks in fields such as bloodflow modelling, nanomaterials modelling, and protein-ligand 
binding calculations. In ComPat, we have already added support for GridFTP to FabSim and created an 
official software release. In the project we will use and further extend FabSim, incorporating the ability 
to flexibly instantiate complete computing patterns for several of the applications using one-line 
commands. FabSim will be integrated with other components of the ComPat software stack, particularly 
with QCG-Broker and coupling tools such as MUSCLE and/or MPWide.  
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2.2.1.3 Monitoring 
Long-running and extremely parallelized simulations, like the exascale multiscale simulations we target, 
need to be effectively monitored during their execution on an HPC infrastructure in order to effectively 
plan experiments and to not waste resources. Therefore, we decided to provide monitoring tools which 
help users to check the correctness of jobs as well as to estimate the time needed for their completion. 
As a basic way of tracking the progress of running applications we propose notification messages with 
portions of the application output sent directly to the user as a mail or chat message. For those who need 
more advanced monitoring capabilities ComPat will provide a dedicated web portal built upon existing 
QCG middleware where the progress can be presented in the form of a set of tables, charts or diagrams 
according to the predefined template designed for a specific application or case.  
 

 2.2.1  Multiscale computing patterns code generators 
The configuration and specification of multiscale models will be done in the existing Multiscale 
Modelling Language. However, the tools in ComPat will employ their own meta-code or configuration 
format. Based on existing tools such as the jMML library, configurations for high-level tools as well as 
middleware can be automatically generated. These can range from job descriptions, instructions for 
profiling a multiscale application, to a runtime topology for making scheduling decisions and 
performance models. Starting from an xMML description of the multiscale application, a task graph will 
be extracted and then mapped to generic multiscale computing pattern task graphs. Next, with 
information on the execution of the single scale model (coming from profilers, Section 2.2.3 and/or from 
performance models, Section 2.2.4) and given one of the three patterns, sufficient information will be 
generated for the QCG middleware components to be able to schedule and execute the multiscale 
application in the most efficient way. In the process of scheduling and brokering the system will take 
into account both users’ preferences and constraints defined by the EEE resource owners. 

2.2.2 Debuggers and profilers 
The debugging tool Allinea DDT [2,3]will be extended to enable more versatile support for multiscale 
simulations and to be seamlessly integrated with the whole ComPat stack (mostly with coupling libraries 
and the middleware services). We can expect that debugging two (or more) closely coupled simulations 
may be required to understand an inter-dependent problem – and we will consider how this can be 
achieved through changes at the framework level and tool level. The Allinea MAP parallel profiler [4,5] 
and the Allinea Performance Reports [6,7] tools platform will be used within the project to obtain 
performance profiles of the applications, which can be used to provide input to the application 
developers. A performance profile contains information regarding an application run, providing 
information on the CPU, MPI and I/O activity, as well as providing more detailed information such as 
the use of vectorisation, multi-threaded performance, energy consumption over the run, and many more. 



ComPat - 671564 

 [D5.1 – Architecture of the ComPat System]  Page 16 of 35 

Furthermore, the profiling tools will be extended with the aim of providing support for each of the 
proposed computing patterns.  The patterns require time and/or energy optimization - both within a 
single scale simulation and also when the scales are coupled. We will develop methods to merge the 
profiling data from multiple executions to provide information regarding the execution of the whole 
simulation, making the task of optimization easier for application developers. Initially we target simple 
couplings of multiscale applications but will target automatically creating such profiles based on the 
coupling frameworks developed in ComPat. 
We will work to provide the tools through which performance can be profiled for the multiscale patterns. 
These tools can be used to obtain performance data from every application executing in a multiscale 
simulation. Such profiling would aggregate related performance data within multiscale simulations – 
providing the ability to determine how the performance of a multiscale simulation can be improved. As 
resources such as storage or networking of one simulation can impact the performance of others on 
many HPC systems, the performance profiling of the multiscale simulation is necessary. This data will 
also be used to validate the performance prediction models generated as part of Task 4.5. 
The use of Allinea tools will enable analysis from a range of perspectives, including:  
• Performance prediction: The existence of measured performance data provides insight into the 

variability of individual simulations, particularly those categorized as parameter sweeping tasks of 
the same single scale simulation. Collectively such variability can impact the whole simulation and 
profiles collected can be used to verify the prediction models built as part of Task 4.5. 

• Energy optimization: By accessing the performance profiles of the whole multiscale simulation it 
will be possible to identify phases in which sub-simulations are completing too early. These sub-
simulations may be candidates for techniques such as frequency scaling, which can deliver the same 
scientific results in the same time but with a lower energy footprint. 

• Optimization of complex workflows: Detailed performance analysis allowing for system level, 
environmental and source-level bottlenecks to be identified can be done using Allinea tools. The 
extensions to the tools provide the ability to view the overall performance of a multi-scale 
simulation as well as source-level detail. This allows for identification – right down to the source 
code – of changes that can optimize complex workflows executing on possibly geographically 
distributed computers, where the changes may not have a large impact when considered within a 
single scale model. 

2.2.3 Performance prediction models 
We will develop performance prediction models for our multiscale applications for two reasons. First, 
we need performance information on the level of the single scale models and the conduits to provide 
sufficient information to the multiscale computing patterns code generators (2.2.2) such that they can 
interact with the middleware to define an optimal execution scenario. Next, we need performance 
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prediction models to be able to project the performance to yet non-existing exascale machines. Given 
our models, validated against runs on the EEE, we will investigate performance on emerging exascale 
architectures. 
This is achieved in three steps. First, a mathematical model of the runtime measures will be made and 
validated. Secondly, a simulation of the runtime and a prediction of its variability will be performed, 
taking into account the scheduler, queuing times, system failures, energy use and system heterogeneity. 
Measures may include the amount of CPU hours used or data generated, but also the amount of energy 
consumed. Finally, the effect of the patterns on actual simulations will be measured throughout the 
project, creating a view of the cumulative effect of implementing different parts of the computing 
patterns and progressing application development as well as analysing their behaviour on emerging 
exascale machines. 
 

2.3 ComPat applications 
ComPat is a science driven project. The urgent need to push the science forward, and stay world leading 
in simulation driven science and engineering is our major motivation. The challenges in each of the 
domains represented in ComPat are of enormous intellectual, societal, economic and industrial concern. 
The first is in nuclear fusion, where our ability to understand interactions between turbulence at very 
small scales and the large scale plasma behaviour holds the key to control its magnetic confinement in 
order to produce clean and carbon free energy for the indefinite future. The second, from Astrophysics, 
aims to understand the formation processes of stars in their clustered environment, as well as the origin 
and propagation of structure in the stellar disk of the Milky Way Galaxy. A third has the highly ambitious 
aim of the predicting the materials’ properties of macroscopic samples of matter based on the 
specification of the atoms and molecules comprising it.  Our final challenges are in biomedicine: we 
need to obtain deeper understanding of pathophysiology of vascular disease, to provide personalised 
models of the vasculature in near to or real time for the purpose of supporting of clinical decision-
making, and to rapidly and accurately calculate the binding free energies in drug discovery and 
personalized medicine.  
Each of these applications will use the integrated nature of the ComPat system architecture to support 
and extend their complicated multiscale scenarios. In this section, we show, for selected examples, how 
the multiscale scenarios envisaged will be made possible by the ComPat architecture.  
In the domain of biomedicine, we have recently calculated the free energy of binding of an 
unprecedented number of ligands to proteins by utilizing the whole of the SuperMUC machine at LRZ 
(250,000 cores in total). To achieve this feat, we required a highly specific set of scripts and commands, 
combined with human interaction, to ensure successful completion of a workflow composed of a large 
ensemble of interdependent replica simulations. With the ComPat system architecture, the submission 
of ensembles can be handled and abstracted by Pilot Jobs, the simulations can be monitored and analyzed 
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by QCG monitoring and Allinea profiling respectively, and the data can be automatically transferred 
back to our host institution using the Data Transfer software. The ComPat architecture will therefore 
make the pre-execution and execution of our simulations easier and automated, as well as more robust, 
reusable and with shorter turnaround times. It will also allow us to straightforwardly extend this 
methodology to a range of new use cases and create more complicated workflows (for example, re-
simulation and modification of promising drug candidates, which will require multiscale coupling to 
quantum simulations for parameterization). In the future, we envisage using distributed HPC resources 
for this application when we are not able to access a large amount of resources on a single machine; the 
ComPat software architecture will make this possible through its middleware services, such as the QCG-
Broker and the Jobs and Advanced Reservation Manager. Using performance prediction models and the 
Replica Computing code generator, the QCG tools will be able to schedule and execute our free energy 
of binding simulations in the most efficient way (including energy efficiency), with the minimum of 
human interaction. Due the generic nature of the computing patterns, this schema will be reusable for 
other Replica Computing applications as well. 
Similarly, the ComPat architecture will allow advanced multiscale simulations scenarios to become 
possible for the other applications. In the fusion domain, the cornerstone component in both applications 
is MUSCLE, which couples together the singles scale models.  In the HMM fusion application, advance 
reservation and energy aware components (ECOL, QCG scheduler), in combination with the HMM 
manager, will improve the efficiency of the application on the targeted computing systems. For the 
Aneurysm Flow Dynamics application, which currently uses the FabSim toolkit for job submission and 
curation of the single-scale simulation code (HemeLB), the QCG brokering system and the advanced 
reservation system, combined with MUSCLE, will allow the coupling required for the Extreme Scaling 
computing pattern. The ComPat architecture will allow this to be integrated with the workflows we 
currently use with the FabSim tool. 
For each application, tools in the ComPat architecture are required to make their multiscale simulations 
viable. In Table 3 we identify the components of the architecture that will be used by each application. 
As we can see, many of the components will be used by multiple applications, indicating the generic 
nature of the architecture.  
More detailed information of the application multiscale simulation scenarios, their use and integration 
of the ComPat architecture will be presented in Deliverable 3.1. In this rest of this section, we describe 
the libraries and toolkits required by our single-scale applications. 
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  Application and pattern  
  Nanomaterials 

 
Biomedicine Fusion Astrophysis Astrophysics 

  “on-the-fly” 
coarse-
graining 

(HMM) (RC) 

Aneurysm 
flow 
dynamics 
(ES) 
(HMM) 

In-stent  
restenosis 
(ES)(RC) 

Binding 
affinities 
(RC) 

RBC 
and 
platelet 
transport 
(ES) 

Blood 
rheology 
(HMM) 

Global 
turbulence 
simulation 
(ES)  

Flux-
tube 
chain 
(HMM) 

Milky-
Way 
Galaxy 
simulation 
(ES) 
(HMM) 

Star cluster 
formation 
simulation 
(ES) 
(HMM) 

ComPat 
high-level 
tools 

QCG client 
tools 

          
FabSim           
Monitoring           
HPMC 
Pattern 
Code 
Generators 

          

Debuggers           
Profilers           
Performance 
Prediction  
Models 

          

Application 
libraries and 
parallel 
programming 
toolkits 

ADIOS 
(Parallel 
I/O) 

          

MPI           
CPU 
Parallel 
Library 

          
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GPGPU 
Parallel 
Library  

          

ECOL           
Patterns’ 
libraries 

MUSCLE           
MPWide           
AMUSE           

Patterns’ 
services 

Pilot jobs           
HMM 
Manager 

          
On-the-fly 
database 

          
Middleware 
Services 

Energy-
aware 
Scheduler 
/Resource 
coordinator 

          

Jobs and 
advance 
Reservation 
Manager 

          

Workflow 
Manager 

          
Data 
Transfer 
(grid FTP/ 
Globus) 

          

ECOS           
MTO  (         

Table 3 The required components of the ComPat architecture for each application. The ticks in brackets indicate that the use of the component depends on the development of 
the application 
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2.3.1 Application libraries and parallel programming toolkits 
The basic role of application libraries and parallel programming toolkits in the architecture of the 
ComPat system is to provide necessary parallelization support for single-scale application kernels. To 
this end, a set of popular parallelization technics, natively supported by the ComPat middleware and 
Allinea tools, will be used. Moreover, our expectation is that computationally intensive ComPat kernels 
will be successfully integrated with the new ECOL library for optimization of energy consumption. 

2.3.1.1 MPI, OpenMP, CUDA, OpenCL 
MPI is the de-facto standard for computing in the distributed memory model, while OpenMP threads 
play the same role for the shared memory model. These two approaches are fundamental also for 
ComPat. However, many new codes make use of more recent computer architectures, such as GPGPU 
or ARM, that need to be handled with different technologies. The scientific codes are often implemented 
in various hybrid configurations, so an MPI application is frequently supported by OpenMP or CUDA. 
This leads to conclusion that the ComPat system, particularly the middleware and EEE, has to support 
a broad range of core libraries for parallelization of single-scale kernels and it has to be flexible and 
open enough to handle state-of-the-art and emerging approaches. In the current phase of the project we 
already provide support for MPI, OpenMP and CUDA. It is also possible to utilize any hybrid 
combinations of them.  

2.3.1.2 Parallel I/O libraries 
The amount of data generated by the applications, especially in the Extreme Scaling computing pattern, 
can be enormous. For big simulations it is not enough to provide sufficient storage capacity, but the 
application has to have guaranteed and efficient access to the data. For a massively parallel application 
writing checkpoint files, this can be a challenge. In addition, this is needed for the Extreme Scaling 
patterns for fault tolerance. A step towards tackling this is using a specialized parallel I/O library to 
increase the bandwidth and the general throughput of I/O devices. In this way, portions of data are spread 
over processes to efficiently write the data to standard file formats. In the ComPat project parallel I/O 
libraries will be used directly by applications to mitigate the input/output (I/O) bottleneck. 

2.3.1.3 Energy Consumption Optimization Library (ECOL) 
To make the patterns energy efficient, it is important to control at runtime the properties of various 
functional units of heterogeneous computing resources, e.g., dynamically turn on and off individual 
cores or change the clock frequency of processing units on-demand. At the same time, the completion 
time of the overall application should not increase above the accepted threshold. As the state-of-the-art 
has significantly changed since the time when the energy-efficiency subsystem of ComPat was proposed 
in the DoW, we are going to perform a set of experiments to determine the most rational way of dealing 
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with the energy consumption optimization. To this end we are going to compare capabilities of two the 
most popular Linux kernel drivers for scaling CPU frequency, namely the old one – ACPI cpufreq – and 
the new one, becoming a default for modern Intel CPUs – intel-pstate. Both of them differ in the range 
of the offered governors’ scaling policies. The most significant difference is lack of the userspace 
governor in the current implementation of the intel-pstate driver, what results in lack of possibility to 
set manually the frequency. This capability is crucial for the initially proposed approach and lack of it 
results in necessity to re-design the concept. Therefore, in our research we are going to investigate if 
some improvements in power saving can be achieved not only by direct adaptation of the frequency but 
also by changing dynamically the configuration of the selected governor. The cost-benefit analysis in 
comparison to the standard native linux mechanisms will be crucial for the decision how the energy 
aspects will be addressed in ComPat.  
We assume that incorporating energy awareness at the application level will be through the development 
and deployment of a new Energy Consumption Optimization Library (ECOL). ECOL will provide a 
well-defined API that will allow to dynamically modify properties of resources on which sub-models 
(components of application) are running. It will be for use by an application itself or any service 
controlling the execution of an application to downsize the overall energy consumption. The final 
decision whether ECOL will work in ComPat on the level of a single scale model, a coupled multiscale 
application, or both will be based on the results of our experiments. In order to support energy-efficient 
execution of ComPat applications, ECOL will provide remote access to advanced dynamic power 
management policies at the HPC hardware level controlled and offered by Energy Consumption 
Optimisation Service (ECOS). Using the ECOL semantic it will be possible to mark logical phases of 
the application’s sub-model that should be reflected in specific resources’ configurations (like governor 
and its configuration). Thus, depending on the CPU- and non-CPU-bound phases of the application, the 
characteristics of the resources (e.g., CPU frequency/voltage scaling or parameters of current scaling 
policy) could be dynamically changed only if it is not restricted by local computing resource policies. 
In turn, the optimization of the energy consumption of the whole application can be realised by 
adaptation and synchronization of the performances of its sub-models. Such a solution should bring a 
significant reduction of power consumption with negligible degradation of the application performance. 
In order to support all ComPat applications, ECOL will provide bindings for all languages in which the 
ComPat single scale models are or will be implemented. 
 

2.4 ComPat patterns 
We define multiscale computing patterns as high-level call sequences that exploit the functional 
decomposition of multiscale models in terms of single scale models. We have identified three computing 
patterns that, based on our previous experience with multiscale modelling, we believe to be most 
relevant for high performance multiscale computing, namely: 
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• Extreme Scaling,   
• Heterogeneous Multiscale Computing, and   
• Replica Computing. 
A major design decision for ComPat, is the realisation that the Multiscale Computing Patterns will be 
expressed on the level of the task graph, generated from xMML, which is then taken together with 
execution recipes specific for a pattern and performance models or data for the single scale models and 
scale bridging algorithms, to determine the actual execution, which will then be specified in 
configuration files for the ComPat middleware. The formulation will provide enough information to 
determine runtime aspects, such as number of cores needed, average amount of time used or energy 
consumed. Equipped with this formal specification, the high-level tools will be able to provide estimates 
for the runtime behaviour of a model on different resources and produce runtime configuration files. 

2.4.1 Patterns’ libraries 
In the following subsections we present libraries that will be implemented or used within the patterns. 
These libraries will be accessible by both the users and the middleware. 

2.4.1.1 MUSCLE 
The Multiscale Coupling Library and Environment (MUSCLE) is a formal specification and framework 
for implementation and execution of multiscale models on distributed resources, including HPC. In the 
project we consider usage of two implementations of the MUSCLE specification, namely MUSCLE2 
and MUSCLE-HPC, which is a recent development from the University of Geneva (please note that 
they were partners in the MAPPER project, and that the PI of the team behind MUSCLE-HPC, Prof. B. 
Chopard, is member of the Scientific Advisory Board of ComPat). 
MUSCLE2 [8,9] is a component-based framework. It recognizes the temporal scale of single scale 
models and keeps simulation time between submodels in sync when they communicate. From a runtime 
perspective, the submodels may be written in Java, C, C++, Fortran, Scala, Python, or Matlab, in 
combination with any parallelisation mechanism. Execution on distributed resources is made possible 
by a dedicated asynchronous and multi-channel message forwarder.  
Submodels in MUSCLE are computed independently so in the Replica Computing pattern they can be 
independently analysed. For the Extreme Scaling pattern, MUSCLE has a high-performance setup and 
acknowledges MPI processes. It will be extended to allow parallel connections for every submodel, so 
each MPI process or each node can set up its own connection. This way, data is not unnecessarily moved 
within the submodel. For optimally using the Heterogeneous Multiscale Computing pattern, MUSCLE 
should be able to dynamically add new submodels to a simulation, so that the micro-scale simulations 
can be started and restarted as needed. These added features fit into the overall architecture of MUSCLE 
and will be realised early in the project. 
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MUSCLE-HPC is a low latency, high bandwidth version of MUSCLE optimized for running multiscale 
simulations on a single cluster. The Muscle-HPC is designed compliantly to the MMSF approach with 
the advantage of using the MPI communication interfaces to couple the codes. It provides an MPI native 
interface for C/C++ and the concept can also be applied to other languages which implements the MPI-
2.2 features like in Fortran and Python (the current API is developed and tested using C++ language).  
MUSCLE-HPC provides a comparable performance to the native MPI computation time, while keeping 
the high level design principle of MMSF. 

2.4.1.2 MPWide 
MPWide is a communication library for distributed message passing, optimised for performance, used 
for both parallelizing simulations across multiple distributed computing resources and for ensuring 
highly responsive coupling between single scale models in a multiscale simulation [10,11]. MPWide is 
embedded into MUSCLE and was directly used to facilitate very fast coupling in a multiscale blood 
flow application [12]. MPWide supports models written in C, C++, Python or FORTRAN.    
We will adapt MPWide in four ways. First, we are going to implement automatic performance tuning 
of communication paths, improving performance without decrease of usability. Second, we will 
implement mechanisms to explicitly detect and classify connection errors, so that MPWide can use its 
runtime connection/disconnection routines to facilitate fault-tolerant operation. Third, MPWide will be 
extended to allow use of multiple network routes for its communications, both to boost performance and 
to introduce fault-tolerant communications. And fourth, several new non-blocking and asymmetric 
message-exchange mechanisms will be implemented to increase the utility of MPWide for new 
applications. 

2.4.1.3 AMUSE 
The Astrophysical MUltipurpose Software Environment (AMUSE) provides a homogeneous interface 
to a wide variety of packages, which enables the research of astrophysical phenomena where complex 
interactions occur between different physical domains [13,14]. The natural hierarchy makes distributed 
computing relatively straightforward, but load balancing and high performance is complicated due to 
the wide variety of compute requirements and the diversity of algorithms. Some algorithms work 
excellently on parallel GPU architectures, whereas others require more traditional architectures. For 
astronomical research generally a wide variety of codes are coupled via the AMUSE framework, and 
the specific runtime requirements of each of these codes makes for an enormous challenge. 
Optimizations are required for networking, runtime behaviour, data I/O, the generation of initial 
conditions and raw flop rates for production. The multiscale computing patterns proposed here will 
enable a smooth porting of the framework to exascale infrastructures. 
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2.4.2 Patterns’ services 
2.4.2.1 Pilot jobs 
Energy-aware allocating of large-scale resources will be done through the QCG middleware stack. 
However, running a large and a priori unknown number of relatively small jobs in a queuing system 
requires the use of a specialized solution to ensure proper level of utilization of resources and to mitigate 
the negative impact of cumulative queuing time on the overall performance of the multi-tasks 
simulation. The well-known and wildly used solution is to benefit from the concept of a pilot job, in 
which all the tasks are executed inside a single meta-job allocation. Systems implementing the pilot job 
concept provide flexible application-level resource management capabilities to efficiently utilize 
allocated resources. The most suitable implementation of the pilot job approach will be chosen based on 
a detailed analysis, taking into account not only the available functionality but also the ease of 
integration with the whole ComPat stack. One of the candidates is the RADICAL Cybertools Pilot Job 
implementation, which provides the ability to concurrently start multiple instances of single scale 
models by packing them into only one job slot on an HPC resource.  

2.4.2.2 HMM manager 
A central component in Heterogeneous Multiscale Computing is the HMM manager, which coordinates 
the data flow from the fine-scale models, which run on-demand, and the coarse-scale model. The HMM 
manager also assesses the possibility to forego on-demand execution of a fine-scale model, and pass 
back values based on interpolations from existing results instead. To implement the HMM manager we 
will rely on a non-centralized database solution (on-the-fly-database), to be wrapped by MUSCLE 
component, in combination with a parallelised I/O library. The manager thus becomes a new component 
in MUSCLE, on the same level as ‘mappers’, ‘conduits’, or ‘filters’. The main difference is that the 
manager should be able to keep its state (that is, store it to disk) for subsequent runs (thus avoiding 
recomputing the whole content of the database over and over again). Note that user communities could 
decide to set up a central data base solution (maybe even in the public domain) to share computed HMM 
results, and that the HMM manager actually reads from such central database. This is however beyond 
the scope of ComPat. The manager will be designed in such a way that such further innovations are 
possible. 

2.4.2.3 On-the-fly database 
We will construct an on-the-fly database to limit the number of microscale simulations required [15, 
16]. This database serves to store previously computed data and, where desirable, interpolate between 
already computed values to provide input to the macroscale model. This is feasible because the amount 
of data passed up to the macroscale simulation is usually not large, perhaps a few floating-point numbers 
representing quantities of interest (such as the viscosity for fluid problems). The on-the-fly database will 
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be managed by the HMM manager, and can also play a role in the Replica Computing pattern (depending 
on the exact usage mode of the RC pattern). 

2.5 ComPat middleware services 
In order to simplify and automatize scientific simulations, the access to distributed HPC resources is 
typically made via a middleware systems. There is no exception in ComPat, where pattern-enhanced 
multiscale simulations, as shown in Figure 3, are submitted, controlled and managed by the QCG 
(former QosCosGrid) Middleware. The role of QCG and other middleware services is a subject of the 
next few sections. Please note that the figure - for completeness - includes black-boxes called patterns’ 
services. The functions of components embedded in these black-boxes is out of scope of this section and 
it is discussed in section 2.4.2 along with a detailed description of particular patterns. 

 
Figure 3. The architecture of ComPat middleware layer 

2.5.1 QCG-Middleware 
The QCG [17,18,19] middleware can virtually weld computing resources from different administrative 
domains into a single powerful supercomputing resource. This capability is essential for the ComPat 
applications to scale up towards exascale performance already now, while there are only petascale 
systems available. The middleware has been developed in the EU project QosCosGrid and later adapted 
and extended to support requirements of multiscale codes in the MAPPER project. Presently QCG 



ComPat - 671564 

 [D5.1 – Architecture of the ComPat System]  Page 27 of 35 

delivers a ready-to-use stack of validated efficient middleware software components that can manage 
extremely parallel as well as multiscale simulations, notably MUSCLE-based ones. Our analysis and 
initial tests confirm that the functionalities offered by the midleware provides solid foundations for 
innovative ComPat scenarios. The middleware will, of course, need to be improved and extended to 
address heterogeneous architectures and specific needs of the ComPat project. Especially, the energy 
efficiency aspect of multi-scale calculations is a completely new functional area that has to be 
thoroughly analysed in order to integrate with the QCG stack. The extensions to the middleware services 
will be done in close cooperation with other Work Packages.  

2.5.1.1 Energy-aware scheduler and resource co-allocator (QCG-Broker) 
The Energy-aware Scheduler will be designed and implemented as a new module to the QCG-Broker 
service. The module will be responsible for taking multi-criterion scheduling decisions for assigning 
jobs to resources with the node granularity, based on its knowledge of application profile (including 
energy characteristics) and topology of underlying resources. The middleware will schedule and co-
allocate jobs to minimize the cost of infrastructure operation trying to guarantee the requested level of 
Quality of Service or, at least, minimize its violations. To optimize energy consumption, jobs submitted 
by the middleware may also be run at lower than nominal CPU frequency.  
Before its use in production, the new scheduling/brokering policies, as well as resource management 
ones, will be verified and tested within the specialised simulation environment. To this end, the PSNC’s 
DCworms simulator will be used. This tool allows modelling and simulation of computing 
infrastructures to estimate their performance and energy consumption for diverse workloads and 
management policies [20]. It allows modelling of computing patterns with various granularities. The 
presence of detailed resource usage information, current resource energy state description and functional 
energy management interface enable relatively easy implementation of novel energy-aware scheduling 
algorithms where resource energy consumption becomes an additional criterion in the scheduling 
process. Based on performance models for the multiscale computing patterns, DCworms will be used to 
test and evaluate various scheduling and resource management strategies for exascale multiscale 
applications. 
 

2.5.1.2 Job and advance reservation manager (QCG-Computing) 
QCG offers capabilities for managing jobs and advanced reservations on a single resource through the 
QCG-Computing service. The component may be used standalone to provide access to a single resource, 
however in complex scenarios, such as ComPat multi-scale simulations, it is heavily exploited by QCG-
Broker to manage execution of co-allocated multi-site jobs. QCG-Computing proved to achieve high 
performance and can be considered as one of the most reliable and efficient tools that provide remote 
access to queuing systems and their capabilities including advance reservation [21]. In scope of the 
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project the QCG-Computing service will be extended to provide to QCG-Broker information needed for 
energy-aware scheduling and brokering of jobs as well as to support jobs requiring many heterogeneous 
resource allocations. 

2.5.1.3 Workflow manager (QCG-Broker) 
QCG-Broker is able to deal with complex applications defined as a set of tasks with precedence 
relationships, i.e. workflows. What differentiates QCG from other middleware services supporting 
workflows is that every single task can be connected not only with input or output files, but it may be 
also trigged by predefined conditional rules or any status of one or more jobs or tasks. In the project 
QCG Workflow Manager will be either extended to support specific needs of patterns or new API 
interfaces will be exposed to allow implementation of specific patterns’ business logic on the pattern or 
application side. It is also foreseen to develop necessary extensions that will provide fault tolerance on 
various levels of the multi-scale application execution.  

2.5.1.4 QCG-Notification 
The QCGNotification service role is twofold. On one hand it is actively used for asynchronous 
communication between QCG middleware services. On the other hand, it provides users with the basic 
application’s progress tracking functionality by means of e-mail and XMPP notification messages. In 
ComPat the QCG-Notification service together with the QCG-Monitoring portal assist users in 
estimating the correctness and progress of remote calculations, thus helping them to reduce waiting time 
and improve the overall performance. These two features were regarded as essential by ComPat 
application groups. 

2.5.1.5 QCG-Coordinator 
The multi-resource execution of jobs requires special treatment. Among others it is not straightforward 
to discover and to connect application’s modules distributed over many resources to enable simultaneous 
start of a simulation. In order to deal with this problem, the QCG middleware utilise a lightweight QCG-
Coordinator service that gathers knowledge about running tasks. 

2.5.2 Data transfer (GridFTP / Globus Transfer) 
Data transfers of huge amounts of data, either between the distributed resources used by the multiscale 
applications, or to and from the home institutions of the domain scientists, takes longer than it has in the 
past. Very often, it is required that the system by itself will cope with transfer interruptions and data 
corruption during the transfer. In ComPat we assumed that primary data transfer mechanism will be 
GridFTP [22], which is a mature and widely available solution providing a high-performance, secure, 
reliable data transfer protocol optimized for high-bandwidth wide-area networks. In case of insufficient 
capabilities of the plain GridFTP protocol, we will employ Globus Transfer (formerly known as Globus 
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Online) that assures data integrity, and can automatically restart interrupted transfers. Globus Transfer 
is a cloud-based coordination service that works with standard GridFTP endpoints (like those used in 
QCG), thus it can be easily integrated with QCG using the Globus Transfer’s highly reliable fire-and-
forget approach. 

2.5.3 Energy Consumption Optimization Service (ECOS) 
The role of Energy Consumption Optimization Service is the management of energy parameters of 
single or many resources involved in computations of a distributed multiscale application. Based on 
dynamic information provided by means of the Energy Consumption Optimization Library, the service 
will be responsible for setting up the best possible configuration of all resources in terms of energy 
usage. The main scenario assumes that changes of properties of resources are requested by an application 
and correspond to its phases, but one can imagine scenarios in which ECOS is integrated with the 
energy-aware scheduler or with any pattern manager.  

2.5.4 Multisite Transport Overlay (MTO) 
Multisite Transport Overlay is a successor of the MUSCLE Transport Overlay service used in the 
MAPPER project. It is a daemon for forwarding traffic across administrative domains. This service is 
often required when application kernels, in particular those that are MUSCLE-based, must communicate 
between several sites with firewall restrictions or Network Address Translation (NAT). 

2.6 Experimental Execution Environment 
Within the project, we realise an Experimental Execution Environment, which is continuously available 
to the project, with a fully functional technology stack as described above. The components of the 
ComPat stack described in this deliverable are being deployed and made available for end-users in Work 
Package 6 - see Deliverable 6.1 for details. In its current state, the EEE already provides all the 
middleware services described in Section 2.5 of this document. The environment will allow for efficient 
testing, benchmarking, and even small production runs of ComPat’s applications. It is fully monitored 
and quality assurance processes are in place. With time, the EEE will adapt to the needs of its users, 
integrating new components. 
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3 Conclusions 
The architecture of the ComPat system presented in this document addresses the needs identified so far 
in the project. We believe that the proposed multi-layered design and division in fast-track and deep-
track components not only allows to develop a fully functional system capable of running highly 
demanding applications on extremely large infrastructures, but also facilitates and systematizes the work 
in the project. The presented architecture will be implemented, deployed and verified in the next phases 
of the project in accordance with the Operational Model accepted and described in deliverable D6.1. 
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4 Annexes 
Annex A - Middleware Capabilities Questionnaire 

1. brokering capabilities: matching applications or their parts to     resources to guarantee SLA and 
to ensure requested trade-off between the application performance and the cost of resource 
energy consumption 

2. advance reservation of computing resources 
3. advance reservation of network bandwidth (will be implemented if really needed) 
4. co-allocation of resources: advance reservation of many (potentially heterogeneous) resources 

to synchronize simultaneous processing of many tasks constituting a single application on these 
resources 

5. [energy] efficient data transfer – staging in and out files and     directories in an [energy]efficient 
way 

6. fault tolerance – resubmission of an application module (auto-restarting) when this functionality 
is not supported directly by the LRMS (queueing system) or the provided functionality is not 
sufficient. 

7. checkpointing and resuming of an application or its part (we can imagine that the middleware 
can force an application to checkpoint itself, for example to resume calculations on another 
resource. it will require discussion what triggers such action) 

8. application driven dynamic adaptation of performance and energy consumption characteristic 
of the resources via the ECOL library and ECOS services to adapt the characteristic to 
requirements of current phase of the application 

9. support for the execution of an application / module on hybrid CPU/GPGPU systems 
10. workflow management – currently     the DAG model is supported and the execution of a child 

task can be triggered by any combination of status changes of a parent tasks. (we need to know 
if more advanced constructions like conditions or loops based on tasks’ statuses and 
application’s results are needed - so far they are not supported) 

11. rescheduling – (automatic) resubmission/migration of a task or its part to another resource to 
improve the overall system or application metric (needs clarification, for example what should 
trigger such action) 

12. various types of available middleware clients: commandline, desktop, portal. The commandline 
is prefered for advanced application scenarios especially in the first phase of the project, but the 
other choices may be considered for the future. 

13. JAVA / Python API (to use the middleware functions by external tools or from the inside of the 
application) 
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14. Visual (portal based) monitoring of progress of long running applications (including energy 
consumption) 

15. in-situ visualization – visualization of the application results     in parallel to the computations 
(paraview), possibility of steering of an application execution by altering its parameters in the 
run time 

16. parameter sweep – support for multi-dimensional parameter sweep jobs. Due to performance 
reasons a number of sub-tasks is limited and for running hundreds of tasks we strongly 
recommend application side solutions, e.g. pilot jobs 

17. load balancing – mapping/assigning jobs to resources in a way that balance the overall load on 
the system (cluster level mechanism). 

     
  



ComPat - 671564 

 [D5.1 – Architecture of the ComPat System]  Page 33 of 35 

Annex B – Resource Information Questionaire 
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