
 ComPat - 671564

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 671564.

D5.1 – Architecture of the ComPat System

Due Date M9
Delivery M9
Lead Partner PSNC
Dissemination Level Public
Status Submitted
Approved Executive Board: yes
Version V1.0

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 2 of 35

DOCUMENT INFO

Date and version number Author Comments
19.05.2016 v0.10 Tomasz Piontek First version
25.05.2016 v0.20 Bartosz Bosak Executive summary,

ComPat Architecture section
and diagram

06.06.2016 v0.30 Keeran Brabazon
Dirk Schubert

Allinea Tools

08.06.2016 v0.40 Alfons Hoekstra
Saad Alowayyed

Computing Patterns,
Performance Prediction
Models

08.06.2016 v0.50 Derek Groen FabSim, MPWide
10.06.2016 v0.55 Piotr Kopta QCG Middleware
10.06.2016 v0.60 Peter Coveney ComPat Applications
13.06.2016 v0.70 Stephan Hachinger Experimental Execution

Environment
13.06.2016 v0.80 Arjen van Elteren AMUSE
14.06.2016 v0.90 Ulf Schiller Remarks and corrections
17.06.2016 v0.95 Bartosz Bosak

Tomasz Piontek
Version for the internal review

23.06.2016 James Suter
Helmut Heller

Comments and remarks on
v0.95 (internal review)

27.06.2016 v1.0 Tomasz Piontek Final version

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 3 of 35

CONTRIBUTORS
The contributors to this deliverable are:
Contributor Role
Tomasz Piontek Technical Leader, WP5 Leader and author of this

deliverable
Bartosz Bosak WP5 contributor
Piotr Kopta WP5 contributor
Keeran Brabazon WP4 contributor
Dirk Schubert WP4 contributor, WP4 Leader
Alfons Hoekstra WP2/WP3 Contributor, Project Coordinator
Saad Alowayyed WP3 contributor
Peter Coveney WP3 contributor
Stephan Hachinger WP6 contributor
Ulf Schiller WP3 contributor
Arjen van Elteren WP2 contributor

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 4 of 35

TABLE OF CONTENTS

1 Executive summary .. 7
2 ComPat system architecture ... 7

2.1 General view on the ComPat architecture .. 8
2.2 Tools .. 13

2.2.1 Application submission and monitoring tools ... 13
2.2.1 Multiscale computing patterns code generators .. 15
2.2.2 Debuggers and profilers .. 15
2.2.3 Performance prediction models ... 16

2.3 ComPat applications .. 17
2.3.1 Application libraries and parallel programming toolkits ... 21

2.4 ComPat patterns ... 22
2.4.1 Patterns’ libraries ... 23
2.4.2 Patterns’ services ... 25

2.5 ComPat middleware services ... 26
2.5.1 QCG-Middleware .. 26
2.5.2 Data transfer (GridFTP / Globus Transfer) ... 28
2.5.3 Energy Consumption Optimization Service (ECOS) .. 29
2.5.4 Multisite Transport Overlay (MTO) .. 29

2.6 Experimental Execution Environment ... 29
3 Conclusions .. 30
4 Annexes .. 31

Annex A - Middleware Capabilities Questionnaire .. 31
Annex B – Resource Information Questionaire .. 33

5 References .. 34

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 5 of 35

LIST OF TABLES
Table 1 Division of ComPat components into fast-track and deep-track groups .. 11
Table 2 The list of ComPat software components with respect to their origin and development effort needed to
incorporate them into the ComPat stack. The same colour scheme is used as in Fig. 2. 13
Table 3 The required components of the ComPat architecture for each application. The ticks in brackets indicate
that the use of the component depends on the development of the application... 20

LIST OF FIGURES
Figure 1 ComPat’s multiscale application development and execution loop .. 9
Figure 2 General ComPat architecture. New components are in pink, the existing components that will be modified
in some way are in orange, and the existing components that will not be altered in any way are in grey. 10

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 6 of 35

LIST OF ABREVIATIONS
AMUSE Astrophysical Multipurpose Software Environment
CUDA Compute Unified Device Architecture
ECOL Energy Consumption Optimization Library
ECOS Energy Consumption Optimization Service
EEE Experimental Execution Environment [Project Testbed]
ES Extreme Scaling [Pattern]
GPGPU General-Purpose Graphics Processing Units
HMC Heterogeneous Multiscale Computing [Pattern]
HMM Heterogeneous Multiscale Manager
HPC High Performance Computing
HPMC High Performance Multiscale Computing
ISR In-Stent Restenosis
MAPPER Multiscale Applications on European e-Infrastructures [Project]
MML Multiscale Description Language
MPI Message Passing Interface
MTO Multisite Transport Overlay
MUSCLE Multiscale Coupling Library and Environment
PRACE Partnership for Advanced Computing in Europe
QCG Quality in Cloud and Grid
RC Replica Computing [Pattern]
XMPP Extensible Messaging and Presence Protocol

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 7 of 35

1 Executive summary
The aim of this document is to provide an overview of the ComPat system architecture. In this document,
we present the established technology stack and discuss the integration aspects of all parts of the
ecosystem for building and executing multiscale applications based on the concept of High Performance
Multiscale Computing (HPMC) patters. The ComPat architecture has been designed in close
collaboration with Work Packages 2 (Patterns), 3 (Applications), 4 (Tools) and 6 (Experimental
Execution Environment, EEE). Based on our in-depth analysis, supported by questionnaires completed
by the relevant Work Packages and following the generally accepted methodology of software design
and development, we decided to divide the architecture into several logical layers, namely high-level
tools, applications, computing patterns, middleware and execution environment. These layers, their
components, as well as the relations between them, are the main subject of this document.
The ComPat project distinguishes between fast track and deep track components. Therefore, this
document also presents an internal schedule for developing new components and describes how their
functionalities are related to the project’s objectives. The components assigned to the fast track are
designed to be deployed in the first phase of the project to enable basic functionality of the overall
system, while the deep-track components will be deployed subsequently to support more sophisticated
scenarios. The assignment of components into the deep track is only possible if the implementation and
deployment of such components can be scheduled for later in the project without causing problems with
dependencies between tasks in the Work Packages.
The ComPat project builds upon the achievements of earlier developments wherever possible and
justified. Thus, in addition to completely new software that will be implemented during the project, a
number of previous or complementary software components are also incorporated into the architecture.
This document provides a clear distinction between new ComPat components and those which have
been developed externally. For the existing components the required adaptation effort is described.
This deliverable presents the starting point for all subsequent technical developments in ComPat, and
therefore represents an important early milestone in the project.

2 ComPat system architecture
It is not trivial for computing systems’ designers to address the ever-changing requirements of leading-
edge science. Advanced multiscale simulations, benefiting from the concept of HPMC patterns, have to
be supported by a dedicated, flexible and well-defined system. In this document, we present the design
of the ComPat environment and describe how the environment addresses these requirements. The
information provided here discusses the basics of integration between the main ComPat layers, i.e. high-
level tools, applications, computing patterns, middleware and execution environment, and, as such, this
deliverable will be an essential design document for all the technical Work Packages. By preparing this

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 8 of 35

document in the first phase of the project, we align the work and roles of the project participants as early
as possible.
In order to develop an architecture that fully meets the requirements of applications on the one hand,
and takes all circumstances of the underlying HPC infrastructure into account on the other, the work on
the architecture design was started by tabling two relevant questionnaires (Annex A, B) to the relevant
ComPat technical Work Packages. The first questionnaire was targeted at groups involved in application
design (Work Packages 2 and 3). The target audience of the second questionnaire were resource
providers represented by Work Package 6. The aim of these two questionnaires was to identify, in
advance, all the required functionality foreseen by applications and to determine all the procedural,
administrative and technological limitations in accessing resources. Using the received feedback, we
were able to propose a complete and stable system architecture, which is presented below. Nevertheless,
taking into account the explorative and emerging character of the project, it must be noted that the
proposed architecture may be slightly altered during the next stages of the project. However, we do not
expect any significant changes to its core design.

2.1 General view on the ComPat architecture
Since ComPat is an application driven project, the successful creation and execution of our grand
challenge applications is of the utmost importance for the success of the project, as well as facilitating
a qualitative verification of the (potential) impact of ComPat innovations. This fact was taken into
account when the ComPat consortium defined three general multiscale computing patterns (Extreme
Scaling, Heterogeneous Multiscale Computing and Replica Computing) as a generic layer between the
applications and the (emerging) exascale computational environment. The main aim of the construction
of such patterns (the so called HPMC patterns) is to simplify the implementation of HPC multiscale
applications and to variously enhance their execution. From the point of view of the applications, the
patterns determine the ordering and composition of the single scale models that are coupled within a
multiscale application. It is foreseen that the patterns, by providing well-defined functionalities for
common requirements of multiscale scenarios, e.g. fault tolerance or support for energy-aware
execution, will allow to reduce the “time to market” and enhance the applications’ stability and
performance. We further discuss this, and provide examples from our grand challenge applications, in
Section 2.3.
In order to orchestrate the execution of the pattern-based application on HPC resources and specifically
exascale systems, we require a comprehensive middle- and low-level technology stack. The architecture
of the ComPat system has to support and correspond to the typical scheme of development and execution
of multiscale applications, as presented in Figure 1. This scheme is based on practices worked-out in
earlier projects, particularly in MAPPER, and enriched with modules required for High Performance
Multiscale Computing (most notably, Multiscale Computing Patterns, energy awareness, and
debugging/profiling). We can distinguish here between the development of patterns, single-scale

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 9 of 35

application kernels and the combined development of entire multi-scale applications. As shown by the
thick arrows, the process of development is organized into loops. The undoubtable advantage of the
scheme is the possibility of working in parallel by different ComPat Work Packages.

Figure 1 ComPat’s multiscale application development and execution loop

Nevertheless, since the execution of a multiscale application on the EEE, together with its optimization,
is an integral part of its development, it is necessary for the project to provide unified access to the
execution environment as soon as possible. Therefore, it was decided to distinguish between fast-track
and deep-track components. The components assigned to the fast track are required to be deployed in
the first phase of the project, even with limited functionality, to enable basic operation of the overall
system, while the group of the deep-track components will be deployed subsequently to support more
sophisticated target scenarios. The assignment of components into fast-track and deep-track
development is provided in Table 1.
In Figure 2 we present the general ComPat architecture. The ComPat technology stack is composed of
tools, applications, computing patterns, middleware services, and the exascale multiscale simulation
framework, fully operational on an Experimental Execution Environment, consisting of HPC/PRACE
resources throughout Europe. Whenever possible, the ComPat technology stack benefits from the

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 10 of 35

existing software components and achievements of previous or complementary projects. Thus beside
the completely new developments needed to meet the specific demands of the multiscale computing
patterns and/or the requirements and demands related to exascale performance, there are also mature
components incorporated into the ComPat architecture that with or without modification compose the
whole system. A summary presenting all components on the basis of their origin and required
development effort within the ComPat project is shown in Table 2.

Figure 2 General ComPat architecture. New components are in pink, the existing components that will be

modified in some way are in orange, and the existing components that will not be altered in any way are in grey.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 11 of 35

Layer Fast Track Deep Track
Tools QCG-Client Tools (QCG-Client)

Single-scale Debuggers &
Profilers
FabSim

QCG-Client Tools (QCG-Portal,
QCG-Now)
Monitoring
Multi-scale Debuggers &
Profilers

Applications 2 selected applications, to be
decided

6+ applications
Application libraries and
toolkits

MPI, OpenMP, CUDA, OpenCL ADIOS, ECOL
Patterns ES

RC
HMC

Patterns’ libraries MUSCLE
MUSCLE-HPC

MPWide
AMUSE

Patterns’ services

 Pilot Jobs
HMM Manager
On-the-fly Database

Middleware Job & Advance reservation
manager (QCG-Computing)
Scheduler and resource co-
allocator (QCG-Broker)
GridFTP
MTO

Workflow manager
Energy-aware scheduler and
resource co-allocator
ECOS

EEE 3 selected resources 5+ resources
Table 1 Division of ComPat components into fast-track and deep-track groups

 Component Origin Development effort in ComPat

Too
ls

QCG-Client tools External (QCG) Adaptation to the requirements of
ComPat patterns

FabSim External Integration with other ComPat tools
and adaptation to support the
requirements of the patterns. On-
demand adoptions by Brunel
University

Monitoring External (QCG) Support for new application types
HPMC Code Generators ComPat Development from scratch
Debuggers External (Allinea) Extensions to support debugging of

multi-scale simulations
Profilers External (Allinea) Extensions as well as new

development to support profiling of
multi-scale simulations

Performance Prediction
Models

ComPat Development from scratch

Ap
plic

atio
ns ISR External (UvA) Support for hybrid ES/RC patterns,

porting to EEE machines,
performance monitoring and
modelling

RBC and Platelet transport External (UvA) Development of MUSCLE wrappers
and scale bridging, porting to EEE

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 12 of 35

machines, performance monitoring
and modelling

Blood Rheology External (UvA) Development of MUSCLE wrappers
and scale bridging, porting to EEE
machines, performance monitoring
and modelling, development and
testing of required HMM database
functionality.

Binding Affinities External (UCL) Support for RC jobs, including testing
of Pilot Jobs and porting to EE
machines.

Nanomaterials External (UCL) Development of scale bridging
methods (model building /
parameterisation etc) support for
HMM database functionality

Aneurysm flow dynamics External (UCL) Development of MUSCLE wrappers
for coupling high-to-low resolution
simulations as part of Extreme Scaling
pattern, performance monitoring and
modelling, decomposition based time-
to-solution prediction.

Fusion External (IPP) Development of MUSCLE wrappers
and scale bridging methods, porting,
performance monitoring and scenario
optimization on EEE machines.

Astrophysics External (Leiden) Integration of performance
monitoring and modelling with
AMUSE and MPWide.

Ap
plic

atio
ns’

 lib
rari

es Parallel I/O Library
(e.g. MPI-IO, ADIOS)

External -
MPI (e.g. OpenMPI) External -
OpenMP External -
CUDA External -
OpenCL External -
ECOL ComPat Development from scratch

Pat
tern

s ES ComPat Development from scratch
HMM ComPat Development from scratch
RC ComPat Development from scratch

Pat
tern

s’ l
ibra

ries
 MUSCLE2 External (MAPPER) porting and testing on EEE, merging

with MUSCLE-HPC, extending with
dynamic instantiations of single scale
models

MUSCLE-HPC External (University
of Geneva)

Merging with MUSCLE2
MPWide External (MAPPER) -
AMUSE External (University

Leiden)
Support for HPMC Patterns

Pat
tern s’ ser
vic

e Pilot jobs External Support for specific HPMC Patterns
needs

HMM Manager ComPat development from scratch

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 13 of 35

On-the-fly Database ComPat development from scratch
Mi

ddl
ew

are
 ser

vic
es

Energy aware scheduler &
resource co-allocator

External (QCG) Incorporating energy-metrics into
scheduling process
Support for patterns-based
applications

Job & advance reservation
manager

External (QCG) Support for patterns-based
applications

Workflow manager External (QCG) Support for patterns-based
applications,
Fault tolerance issues

Data transfer External -
ECOS ComPat Development from scratch
MTO External (MAPPER) Possible rewrite to support new

scenarios

EE
E Several resources of peta-

scale class
External (PRACE
resources)

Configuration supporting multi-site
execution of ComPat jobs

Table 2 The list of ComPat software components with respect to their origin and development effort needed to
incorporate them into the ComPat stack. The same colour scheme is used as in Fig. 2.

In the following sections we discuss all the layers of the ComPat architecture one by one. A special
focus is given to relations between elementary components and their role in the system.

2.2 Tools
The aim of the ComPat tools is to offer wide support for users in the process of development and
execution of multiscale applications. We define the following generic groups of tools:

- application submission and monitoring tools,
- pattern-based code and/or input files generators,
- application debuggers and profilers,
- performance prediction models.

In the following subsections we present all of these groups.

2.2.1 Application submission and monitoring tools
To execute jobs on the ComPat resources several submission and monitoring tools are offered. At this
stage of the project, the scope of functionality provided by the selected tools is sufficient for execution
of basic multiscale jobs. This was validated in a previous project (MAPPER). However, we anticipate a
number of extensions to the tools and formal description languages in order to fulfil the specific
requirements for High Performance Multiscale Computing, i.e. support for extensions in the Multiscale
Modelling Language (MML) description to handle patterns and energy-efficiency constraints, fault
tolerance in exascale environments or flexible monitoring of the progress of running application.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 14 of 35

2.2.1.1 QCG submission tools
The underlying QCG system has a set of dedicated access tools, including command-line, desktop and
portal-based versions. We anticipate that the command-line QCG-Client, together with the supporting
FabSim tool described in the next section, will be the primary access tool for the whole project. Taking
into account preferences expressed by ComPat users as well as the complexity of selected multiscale
applications, we do not expect, certainly in the first phase of the project, the need to use any graphical
interfaces.
The QCG-Client, is a set of command-line tools, inspired by batch system commands, which allow a
user to submit, control and monitor a large number of various types of grid jobs as well as to reserve
resources to obtain a requested level of quality of service. Since the QCG-Client’s user interface is
analogous to common batch systems’ interfaces, the effort needed to start using the tool is relatively
small. To be processed by QCG, tasks have to be described in a formal way. The basic description
format, called QCG-Simple, is preferred and sufficient for a majority of tasks. However, it does not yet
allow users to describe more sophisticated scenarios like workflows or tightly-coupled multi-scale
simulations. This format will be extended appropriately in the next phases of the project. For now, all
advanced scenarios supported by the QCG middleware have to be described by using the native XML
based format, called QCG-Profile, that also will be slightly extended to support project goals. It is worth
noting that QCG-Client provides valuable support for interactive access to resources if only a resource
exposes this capability. Thus, depending on their particular needs, users can easily submit an interactive
task to a cluster and either run their command line applications in interactive mode or compile their own
code and process some debugging sessions directly on computing nodes.

2.2.1.2 FabSim
FabSim [1] is a Python-based automation toolkit for scientific simulation and data processing
workflows. It enables users to perform remote tasks from a local command-line, and to run applications
while curating the application data in a systematic manner. FabSim also contains a system for defining
machine specific and application-specific configurations, with frequently used default settings being
curated through a GitHub repository. FabSim is currently in use across several universities to automate
computational tasks in fields such as bloodflow modelling, nanomaterials modelling, and protein-ligand
binding calculations. In ComPat, we have already added support for GridFTP to FabSim and created an
official software release. In the project we will use and further extend FabSim, incorporating the ability
to flexibly instantiate complete computing patterns for several of the applications using one-line
commands. FabSim will be integrated with other components of the ComPat software stack, particularly
with QCG-Broker and coupling tools such as MUSCLE and/or MPWide.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 15 of 35

2.2.1.3 Monitoring
Long-running and extremely parallelized simulations, like the exascale multiscale simulations we target,
need to be effectively monitored during their execution on an HPC infrastructure in order to effectively
plan experiments and to not waste resources. Therefore, we decided to provide monitoring tools which
help users to check the correctness of jobs as well as to estimate the time needed for their completion.
As a basic way of tracking the progress of running applications we propose notification messages with
portions of the application output sent directly to the user as a mail or chat message. For those who need
more advanced monitoring capabilities ComPat will provide a dedicated web portal built upon existing
QCG middleware where the progress can be presented in the form of a set of tables, charts or diagrams
according to the predefined template designed for a specific application or case.

 2.2.1 Multiscale computing patterns code generators
The configuration and specification of multiscale models will be done in the existing Multiscale
Modelling Language. However, the tools in ComPat will employ their own meta-code or configuration
format. Based on existing tools such as the jMML library, configurations for high-level tools as well as
middleware can be automatically generated. These can range from job descriptions, instructions for
profiling a multiscale application, to a runtime topology for making scheduling decisions and
performance models. Starting from an xMML description of the multiscale application, a task graph will
be extracted and then mapped to generic multiscale computing pattern task graphs. Next, with
information on the execution of the single scale model (coming from profilers, Section 2.2.3 and/or from
performance models, Section 2.2.4) and given one of the three patterns, sufficient information will be
generated for the QCG middleware components to be able to schedule and execute the multiscale
application in the most efficient way. In the process of scheduling and brokering the system will take
into account both users’ preferences and constraints defined by the EEE resource owners.

2.2.2 Debuggers and profilers
The debugging tool Allinea DDT [2,3]will be extended to enable more versatile support for multiscale
simulations and to be seamlessly integrated with the whole ComPat stack (mostly with coupling libraries
and the middleware services). We can expect that debugging two (or more) closely coupled simulations
may be required to understand an inter-dependent problem – and we will consider how this can be
achieved through changes at the framework level and tool level. The Allinea MAP parallel profiler [4,5]
and the Allinea Performance Reports [6,7] tools platform will be used within the project to obtain
performance profiles of the applications, which can be used to provide input to the application
developers. A performance profile contains information regarding an application run, providing
information on the CPU, MPI and I/O activity, as well as providing more detailed information such as
the use of vectorisation, multi-threaded performance, energy consumption over the run, and many more.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 16 of 35

Furthermore, the profiling tools will be extended with the aim of providing support for each of the
proposed computing patterns. The patterns require time and/or energy optimization - both within a
single scale simulation and also when the scales are coupled. We will develop methods to merge the
profiling data from multiple executions to provide information regarding the execution of the whole
simulation, making the task of optimization easier for application developers. Initially we target simple
couplings of multiscale applications but will target automatically creating such profiles based on the
coupling frameworks developed in ComPat.
We will work to provide the tools through which performance can be profiled for the multiscale patterns.
These tools can be used to obtain performance data from every application executing in a multiscale
simulation. Such profiling would aggregate related performance data within multiscale simulations –
providing the ability to determine how the performance of a multiscale simulation can be improved. As
resources such as storage or networking of one simulation can impact the performance of others on
many HPC systems, the performance profiling of the multiscale simulation is necessary. This data will
also be used to validate the performance prediction models generated as part of Task 4.5.
The use of Allinea tools will enable analysis from a range of perspectives, including:
• Performance prediction: The existence of measured performance data provides insight into the

variability of individual simulations, particularly those categorized as parameter sweeping tasks of
the same single scale simulation. Collectively such variability can impact the whole simulation and
profiles collected can be used to verify the prediction models built as part of Task 4.5.

• Energy optimization: By accessing the performance profiles of the whole multiscale simulation it
will be possible to identify phases in which sub-simulations are completing too early. These sub-
simulations may be candidates for techniques such as frequency scaling, which can deliver the same
scientific results in the same time but with a lower energy footprint.

• Optimization of complex workflows: Detailed performance analysis allowing for system level,
environmental and source-level bottlenecks to be identified can be done using Allinea tools. The
extensions to the tools provide the ability to view the overall performance of a multi-scale
simulation as well as source-level detail. This allows for identification – right down to the source
code – of changes that can optimize complex workflows executing on possibly geographically
distributed computers, where the changes may not have a large impact when considered within a
single scale model.

2.2.3 Performance prediction models
We will develop performance prediction models for our multiscale applications for two reasons. First,
we need performance information on the level of the single scale models and the conduits to provide
sufficient information to the multiscale computing patterns code generators (2.2.2) such that they can
interact with the middleware to define an optimal execution scenario. Next, we need performance

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 17 of 35

prediction models to be able to project the performance to yet non-existing exascale machines. Given
our models, validated against runs on the EEE, we will investigate performance on emerging exascale
architectures.
This is achieved in three steps. First, a mathematical model of the runtime measures will be made and
validated. Secondly, a simulation of the runtime and a prediction of its variability will be performed,
taking into account the scheduler, queuing times, system failures, energy use and system heterogeneity.
Measures may include the amount of CPU hours used or data generated, but also the amount of energy
consumed. Finally, the effect of the patterns on actual simulations will be measured throughout the
project, creating a view of the cumulative effect of implementing different parts of the computing
patterns and progressing application development as well as analysing their behaviour on emerging
exascale machines.

2.3 ComPat applications
ComPat is a science driven project. The urgent need to push the science forward, and stay world leading
in simulation driven science and engineering is our major motivation. The challenges in each of the
domains represented in ComPat are of enormous intellectual, societal, economic and industrial concern.
The first is in nuclear fusion, where our ability to understand interactions between turbulence at very
small scales and the large scale plasma behaviour holds the key to control its magnetic confinement in
order to produce clean and carbon free energy for the indefinite future. The second, from Astrophysics,
aims to understand the formation processes of stars in their clustered environment, as well as the origin
and propagation of structure in the stellar disk of the Milky Way Galaxy. A third has the highly ambitious
aim of the predicting the materials’ properties of macroscopic samples of matter based on the
specification of the atoms and molecules comprising it. Our final challenges are in biomedicine: we
need to obtain deeper understanding of pathophysiology of vascular disease, to provide personalised
models of the vasculature in near to or real time for the purpose of supporting of clinical decision-
making, and to rapidly and accurately calculate the binding free energies in drug discovery and
personalized medicine.
Each of these applications will use the integrated nature of the ComPat system architecture to support
and extend their complicated multiscale scenarios. In this section, we show, for selected examples, how
the multiscale scenarios envisaged will be made possible by the ComPat architecture.
In the domain of biomedicine, we have recently calculated the free energy of binding of an
unprecedented number of ligands to proteins by utilizing the whole of the SuperMUC machine at LRZ
(250,000 cores in total). To achieve this feat, we required a highly specific set of scripts and commands,
combined with human interaction, to ensure successful completion of a workflow composed of a large
ensemble of interdependent replica simulations. With the ComPat system architecture, the submission
of ensembles can be handled and abstracted by Pilot Jobs, the simulations can be monitored and analyzed

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 18 of 35

by QCG monitoring and Allinea profiling respectively, and the data can be automatically transferred
back to our host institution using the Data Transfer software. The ComPat architecture will therefore
make the pre-execution and execution of our simulations easier and automated, as well as more robust,
reusable and with shorter turnaround times. It will also allow us to straightforwardly extend this
methodology to a range of new use cases and create more complicated workflows (for example, re-
simulation and modification of promising drug candidates, which will require multiscale coupling to
quantum simulations for parameterization). In the future, we envisage using distributed HPC resources
for this application when we are not able to access a large amount of resources on a single machine; the
ComPat software architecture will make this possible through its middleware services, such as the QCG-
Broker and the Jobs and Advanced Reservation Manager. Using performance prediction models and the
Replica Computing code generator, the QCG tools will be able to schedule and execute our free energy
of binding simulations in the most efficient way (including energy efficiency), with the minimum of
human interaction. Due the generic nature of the computing patterns, this schema will be reusable for
other Replica Computing applications as well.
Similarly, the ComPat architecture will allow advanced multiscale simulations scenarios to become
possible for the other applications. In the fusion domain, the cornerstone component in both applications
is MUSCLE, which couples together the singles scale models. In the HMM fusion application, advance
reservation and energy aware components (ECOL, QCG scheduler), in combination with the HMM
manager, will improve the efficiency of the application on the targeted computing systems. For the
Aneurysm Flow Dynamics application, which currently uses the FabSim toolkit for job submission and
curation of the single-scale simulation code (HemeLB), the QCG brokering system and the advanced
reservation system, combined with MUSCLE, will allow the coupling required for the Extreme Scaling
computing pattern. The ComPat architecture will allow this to be integrated with the workflows we
currently use with the FabSim tool.
For each application, tools in the ComPat architecture are required to make their multiscale simulations
viable. In Table 3 we identify the components of the architecture that will be used by each application.
As we can see, many of the components will be used by multiple applications, indicating the generic
nature of the architecture.
More detailed information of the application multiscale simulation scenarios, their use and integration
of the ComPat architecture will be presented in Deliverable 3.1. In this rest of this section, we describe
the libraries and toolkits required by our single-scale applications.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 19 of 35

 Application and pattern
 Nanomaterials

Biomedicine Fusion Astrophysis Astrophysics

 “on-the-fly”
coarse-
graining

(HMM) (RC)

Aneurysm
flow
dynamics
(ES)
(HMM)

In-stent
restenosis
(ES)(RC)

Binding
affinities
(RC)

RBC
and
platelet
transport
(ES)

Blood
rheology
(HMM)

Global
turbulence
simulation
(ES)

Flux-
tube
chain
(HMM)

Milky-
Way
Galaxy
simulation
(ES)
(HMM)

Star cluster
formation
simulation
(ES)
(HMM)

ComPat
high-level
tools

QCG client
tools

       
FabSim   
Monitoring      
HPMC
Pattern
Code
Generators

      

Debuggers   
Profilers          
Performance
Prediction
Models

         

Application
libraries and
parallel
programming
toolkits

ADIOS
(Parallel
I/O)

    

MPI          
CPU
Parallel
Library

   

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 20 of 35

GPGPU
Parallel
Library

  

ECOL   
Patterns’
libraries

MUSCLE       
MPWide         
AMUSE  

Patterns’
services

Pilot jobs 
HMM
Manager

   
On-the-fly
database

  
Middleware
Services

Energy-
aware
Scheduler
/Resource
coordinator

       

Jobs and
advance
Reservation
Manager

        

Workflow
Manager

     
Data
Transfer
(grid FTP/
Globus)

        

ECOS      
MTO (    

Table 3 The required components of the ComPat architecture for each application. The ticks in brackets indicate that the use of the component depends on the development of
the application

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 21 of 35

2.3.1 Application libraries and parallel programming toolkits
The basic role of application libraries and parallel programming toolkits in the architecture of the
ComPat system is to provide necessary parallelization support for single-scale application kernels. To
this end, a set of popular parallelization technics, natively supported by the ComPat middleware and
Allinea tools, will be used. Moreover, our expectation is that computationally intensive ComPat kernels
will be successfully integrated with the new ECOL library for optimization of energy consumption.

2.3.1.1 MPI, OpenMP, CUDA, OpenCL
MPI is the de-facto standard for computing in the distributed memory model, while OpenMP threads
play the same role for the shared memory model. These two approaches are fundamental also for
ComPat. However, many new codes make use of more recent computer architectures, such as GPGPU
or ARM, that need to be handled with different technologies. The scientific codes are often implemented
in various hybrid configurations, so an MPI application is frequently supported by OpenMP or CUDA.
This leads to conclusion that the ComPat system, particularly the middleware and EEE, has to support
a broad range of core libraries for parallelization of single-scale kernels and it has to be flexible and
open enough to handle state-of-the-art and emerging approaches. In the current phase of the project we
already provide support for MPI, OpenMP and CUDA. It is also possible to utilize any hybrid
combinations of them.

2.3.1.2 Parallel I/O libraries
The amount of data generated by the applications, especially in the Extreme Scaling computing pattern,
can be enormous. For big simulations it is not enough to provide sufficient storage capacity, but the
application has to have guaranteed and efficient access to the data. For a massively parallel application
writing checkpoint files, this can be a challenge. In addition, this is needed for the Extreme Scaling
patterns for fault tolerance. A step towards tackling this is using a specialized parallel I/O library to
increase the bandwidth and the general throughput of I/O devices. In this way, portions of data are spread
over processes to efficiently write the data to standard file formats. In the ComPat project parallel I/O
libraries will be used directly by applications to mitigate the input/output (I/O) bottleneck.

2.3.1.3 Energy Consumption Optimization Library (ECOL)
To make the patterns energy efficient, it is important to control at runtime the properties of various
functional units of heterogeneous computing resources, e.g., dynamically turn on and off individual
cores or change the clock frequency of processing units on-demand. At the same time, the completion
time of the overall application should not increase above the accepted threshold. As the state-of-the-art
has significantly changed since the time when the energy-efficiency subsystem of ComPat was proposed
in the DoW, we are going to perform a set of experiments to determine the most rational way of dealing

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 22 of 35

with the energy consumption optimization. To this end we are going to compare capabilities of two the
most popular Linux kernel drivers for scaling CPU frequency, namely the old one – ACPI cpufreq – and
the new one, becoming a default for modern Intel CPUs – intel-pstate. Both of them differ in the range
of the offered governors’ scaling policies. The most significant difference is lack of the userspace
governor in the current implementation of the intel-pstate driver, what results in lack of possibility to
set manually the frequency. This capability is crucial for the initially proposed approach and lack of it
results in necessity to re-design the concept. Therefore, in our research we are going to investigate if
some improvements in power saving can be achieved not only by direct adaptation of the frequency but
also by changing dynamically the configuration of the selected governor. The cost-benefit analysis in
comparison to the standard native linux mechanisms will be crucial for the decision how the energy
aspects will be addressed in ComPat.
We assume that incorporating energy awareness at the application level will be through the development
and deployment of a new Energy Consumption Optimization Library (ECOL). ECOL will provide a
well-defined API that will allow to dynamically modify properties of resources on which sub-models
(components of application) are running. It will be for use by an application itself or any service
controlling the execution of an application to downsize the overall energy consumption. The final
decision whether ECOL will work in ComPat on the level of a single scale model, a coupled multiscale
application, or both will be based on the results of our experiments. In order to support energy-efficient
execution of ComPat applications, ECOL will provide remote access to advanced dynamic power
management policies at the HPC hardware level controlled and offered by Energy Consumption
Optimisation Service (ECOS). Using the ECOL semantic it will be possible to mark logical phases of
the application’s sub-model that should be reflected in specific resources’ configurations (like governor
and its configuration). Thus, depending on the CPU- and non-CPU-bound phases of the application, the
characteristics of the resources (e.g., CPU frequency/voltage scaling or parameters of current scaling
policy) could be dynamically changed only if it is not restricted by local computing resource policies.
In turn, the optimization of the energy consumption of the whole application can be realised by
adaptation and synchronization of the performances of its sub-models. Such a solution should bring a
significant reduction of power consumption with negligible degradation of the application performance.
In order to support all ComPat applications, ECOL will provide bindings for all languages in which the
ComPat single scale models are or will be implemented.

2.4 ComPat patterns
We define multiscale computing patterns as high-level call sequences that exploit the functional
decomposition of multiscale models in terms of single scale models. We have identified three computing
patterns that, based on our previous experience with multiscale modelling, we believe to be most
relevant for high performance multiscale computing, namely:

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 23 of 35

• Extreme Scaling,
• Heterogeneous Multiscale Computing, and
• Replica Computing.
A major design decision for ComPat, is the realisation that the Multiscale Computing Patterns will be
expressed on the level of the task graph, generated from xMML, which is then taken together with
execution recipes specific for a pattern and performance models or data for the single scale models and
scale bridging algorithms, to determine the actual execution, which will then be specified in
configuration files for the ComPat middleware. The formulation will provide enough information to
determine runtime aspects, such as number of cores needed, average amount of time used or energy
consumed. Equipped with this formal specification, the high-level tools will be able to provide estimates
for the runtime behaviour of a model on different resources and produce runtime configuration files.

2.4.1 Patterns’ libraries
In the following subsections we present libraries that will be implemented or used within the patterns.
These libraries will be accessible by both the users and the middleware.

2.4.1.1 MUSCLE
The Multiscale Coupling Library and Environment (MUSCLE) is a formal specification and framework
for implementation and execution of multiscale models on distributed resources, including HPC. In the
project we consider usage of two implementations of the MUSCLE specification, namely MUSCLE2
and MUSCLE-HPC, which is a recent development from the University of Geneva (please note that
they were partners in the MAPPER project, and that the PI of the team behind MUSCLE-HPC, Prof. B.
Chopard, is member of the Scientific Advisory Board of ComPat).
MUSCLE2 [8,9] is a component-based framework. It recognizes the temporal scale of single scale
models and keeps simulation time between submodels in sync when they communicate. From a runtime
perspective, the submodels may be written in Java, C, C++, Fortran, Scala, Python, or Matlab, in
combination with any parallelisation mechanism. Execution on distributed resources is made possible
by a dedicated asynchronous and multi-channel message forwarder.
Submodels in MUSCLE are computed independently so in the Replica Computing pattern they can be
independently analysed. For the Extreme Scaling pattern, MUSCLE has a high-performance setup and
acknowledges MPI processes. It will be extended to allow parallel connections for every submodel, so
each MPI process or each node can set up its own connection. This way, data is not unnecessarily moved
within the submodel. For optimally using the Heterogeneous Multiscale Computing pattern, MUSCLE
should be able to dynamically add new submodels to a simulation, so that the micro-scale simulations
can be started and restarted as needed. These added features fit into the overall architecture of MUSCLE
and will be realised early in the project.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 24 of 35

MUSCLE-HPC is a low latency, high bandwidth version of MUSCLE optimized for running multiscale
simulations on a single cluster. The Muscle-HPC is designed compliantly to the MMSF approach with
the advantage of using the MPI communication interfaces to couple the codes. It provides an MPI native
interface for C/C++ and the concept can also be applied to other languages which implements the MPI-
2.2 features like in Fortran and Python (the current API is developed and tested using C++ language).
MUSCLE-HPC provides a comparable performance to the native MPI computation time, while keeping
the high level design principle of MMSF.

2.4.1.2 MPWide
MPWide is a communication library for distributed message passing, optimised for performance, used
for both parallelizing simulations across multiple distributed computing resources and for ensuring
highly responsive coupling between single scale models in a multiscale simulation [10,11]. MPWide is
embedded into MUSCLE and was directly used to facilitate very fast coupling in a multiscale blood
flow application [12]. MPWide supports models written in C, C++, Python or FORTRAN.
We will adapt MPWide in four ways. First, we are going to implement automatic performance tuning
of communication paths, improving performance without decrease of usability. Second, we will
implement mechanisms to explicitly detect and classify connection errors, so that MPWide can use its
runtime connection/disconnection routines to facilitate fault-tolerant operation. Third, MPWide will be
extended to allow use of multiple network routes for its communications, both to boost performance and
to introduce fault-tolerant communications. And fourth, several new non-blocking and asymmetric
message-exchange mechanisms will be implemented to increase the utility of MPWide for new
applications.

2.4.1.3 AMUSE
The Astrophysical MUltipurpose Software Environment (AMUSE) provides a homogeneous interface
to a wide variety of packages, which enables the research of astrophysical phenomena where complex
interactions occur between different physical domains [13,14]. The natural hierarchy makes distributed
computing relatively straightforward, but load balancing and high performance is complicated due to
the wide variety of compute requirements and the diversity of algorithms. Some algorithms work
excellently on parallel GPU architectures, whereas others require more traditional architectures. For
astronomical research generally a wide variety of codes are coupled via the AMUSE framework, and
the specific runtime requirements of each of these codes makes for an enormous challenge.
Optimizations are required for networking, runtime behaviour, data I/O, the generation of initial
conditions and raw flop rates for production. The multiscale computing patterns proposed here will
enable a smooth porting of the framework to exascale infrastructures.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 25 of 35

2.4.2 Patterns’ services
2.4.2.1 Pilot jobs
Energy-aware allocating of large-scale resources will be done through the QCG middleware stack.
However, running a large and a priori unknown number of relatively small jobs in a queuing system
requires the use of a specialized solution to ensure proper level of utilization of resources and to mitigate
the negative impact of cumulative queuing time on the overall performance of the multi-tasks
simulation. The well-known and wildly used solution is to benefit from the concept of a pilot job, in
which all the tasks are executed inside a single meta-job allocation. Systems implementing the pilot job
concept provide flexible application-level resource management capabilities to efficiently utilize
allocated resources. The most suitable implementation of the pilot job approach will be chosen based on
a detailed analysis, taking into account not only the available functionality but also the ease of
integration with the whole ComPat stack. One of the candidates is the RADICAL Cybertools Pilot Job
implementation, which provides the ability to concurrently start multiple instances of single scale
models by packing them into only one job slot on an HPC resource.

2.4.2.2 HMM manager
A central component in Heterogeneous Multiscale Computing is the HMM manager, which coordinates
the data flow from the fine-scale models, which run on-demand, and the coarse-scale model. The HMM
manager also assesses the possibility to forego on-demand execution of a fine-scale model, and pass
back values based on interpolations from existing results instead. To implement the HMM manager we
will rely on a non-centralized database solution (on-the-fly-database), to be wrapped by MUSCLE
component, in combination with a parallelised I/O library. The manager thus becomes a new component
in MUSCLE, on the same level as ‘mappers’, ‘conduits’, or ‘filters’. The main difference is that the
manager should be able to keep its state (that is, store it to disk) for subsequent runs (thus avoiding
recomputing the whole content of the database over and over again). Note that user communities could
decide to set up a central data base solution (maybe even in the public domain) to share computed HMM
results, and that the HMM manager actually reads from such central database. This is however beyond
the scope of ComPat. The manager will be designed in such a way that such further innovations are
possible.

2.4.2.3 On-the-fly database
We will construct an on-the-fly database to limit the number of microscale simulations required [15,
16]. This database serves to store previously computed data and, where desirable, interpolate between
already computed values to provide input to the macroscale model. This is feasible because the amount
of data passed up to the macroscale simulation is usually not large, perhaps a few floating-point numbers
representing quantities of interest (such as the viscosity for fluid problems). The on-the-fly database will

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 26 of 35

be managed by the HMM manager, and can also play a role in the Replica Computing pattern (depending
on the exact usage mode of the RC pattern).

2.5 ComPat middleware services
In order to simplify and automatize scientific simulations, the access to distributed HPC resources is
typically made via a middleware systems. There is no exception in ComPat, where pattern-enhanced
multiscale simulations, as shown in Figure 3, are submitted, controlled and managed by the QCG
(former QosCosGrid) Middleware. The role of QCG and other middleware services is a subject of the
next few sections. Please note that the figure - for completeness - includes black-boxes called patterns’
services. The functions of components embedded in these black-boxes is out of scope of this section and
it is discussed in section 2.4.2 along with a detailed description of particular patterns.

Figure 3. The architecture of ComPat middleware layer

2.5.1 QCG-Middleware
The QCG [17,18,19] middleware can virtually weld computing resources from different administrative
domains into a single powerful supercomputing resource. This capability is essential for the ComPat
applications to scale up towards exascale performance already now, while there are only petascale
systems available. The middleware has been developed in the EU project QosCosGrid and later adapted
and extended to support requirements of multiscale codes in the MAPPER project. Presently QCG

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 27 of 35

delivers a ready-to-use stack of validated efficient middleware software components that can manage
extremely parallel as well as multiscale simulations, notably MUSCLE-based ones. Our analysis and
initial tests confirm that the functionalities offered by the midleware provides solid foundations for
innovative ComPat scenarios. The middleware will, of course, need to be improved and extended to
address heterogeneous architectures and specific needs of the ComPat project. Especially, the energy
efficiency aspect of multi-scale calculations is a completely new functional area that has to be
thoroughly analysed in order to integrate with the QCG stack. The extensions to the middleware services
will be done in close cooperation with other Work Packages.

2.5.1.1 Energy-aware scheduler and resource co-allocator (QCG-Broker)
The Energy-aware Scheduler will be designed and implemented as a new module to the QCG-Broker
service. The module will be responsible for taking multi-criterion scheduling decisions for assigning
jobs to resources with the node granularity, based on its knowledge of application profile (including
energy characteristics) and topology of underlying resources. The middleware will schedule and co-
allocate jobs to minimize the cost of infrastructure operation trying to guarantee the requested level of
Quality of Service or, at least, minimize its violations. To optimize energy consumption, jobs submitted
by the middleware may also be run at lower than nominal CPU frequency.
Before its use in production, the new scheduling/brokering policies, as well as resource management
ones, will be verified and tested within the specialised simulation environment. To this end, the PSNC’s
DCworms simulator will be used. This tool allows modelling and simulation of computing
infrastructures to estimate their performance and energy consumption for diverse workloads and
management policies [20]. It allows modelling of computing patterns with various granularities. The
presence of detailed resource usage information, current resource energy state description and functional
energy management interface enable relatively easy implementation of novel energy-aware scheduling
algorithms where resource energy consumption becomes an additional criterion in the scheduling
process. Based on performance models for the multiscale computing patterns, DCworms will be used to
test and evaluate various scheduling and resource management strategies for exascale multiscale
applications.

2.5.1.2 Job and advance reservation manager (QCG-Computing)
QCG offers capabilities for managing jobs and advanced reservations on a single resource through the
QCG-Computing service. The component may be used standalone to provide access to a single resource,
however in complex scenarios, such as ComPat multi-scale simulations, it is heavily exploited by QCG-
Broker to manage execution of co-allocated multi-site jobs. QCG-Computing proved to achieve high
performance and can be considered as one of the most reliable and efficient tools that provide remote
access to queuing systems and their capabilities including advance reservation [21]. In scope of the

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 28 of 35

project the QCG-Computing service will be extended to provide to QCG-Broker information needed for
energy-aware scheduling and brokering of jobs as well as to support jobs requiring many heterogeneous
resource allocations.

2.5.1.3 Workflow manager (QCG-Broker)
QCG-Broker is able to deal with complex applications defined as a set of tasks with precedence
relationships, i.e. workflows. What differentiates QCG from other middleware services supporting
workflows is that every single task can be connected not only with input or output files, but it may be
also trigged by predefined conditional rules or any status of one or more jobs or tasks. In the project
QCG Workflow Manager will be either extended to support specific needs of patterns or new API
interfaces will be exposed to allow implementation of specific patterns’ business logic on the pattern or
application side. It is also foreseen to develop necessary extensions that will provide fault tolerance on
various levels of the multi-scale application execution.

2.5.1.4 QCG-Notification
The QCGNotification service role is twofold. On one hand it is actively used for asynchronous
communication between QCG middleware services. On the other hand, it provides users with the basic
application’s progress tracking functionality by means of e-mail and XMPP notification messages. In
ComPat the QCG-Notification service together with the QCG-Monitoring portal assist users in
estimating the correctness and progress of remote calculations, thus helping them to reduce waiting time
and improve the overall performance. These two features were regarded as essential by ComPat
application groups.

2.5.1.5 QCG-Coordinator
The multi-resource execution of jobs requires special treatment. Among others it is not straightforward
to discover and to connect application’s modules distributed over many resources to enable simultaneous
start of a simulation. In order to deal with this problem, the QCG middleware utilise a lightweight QCG-
Coordinator service that gathers knowledge about running tasks.

2.5.2 Data transfer (GridFTP / Globus Transfer)
Data transfers of huge amounts of data, either between the distributed resources used by the multiscale
applications, or to and from the home institutions of the domain scientists, takes longer than it has in the
past. Very often, it is required that the system by itself will cope with transfer interruptions and data
corruption during the transfer. In ComPat we assumed that primary data transfer mechanism will be
GridFTP [22], which is a mature and widely available solution providing a high-performance, secure,
reliable data transfer protocol optimized for high-bandwidth wide-area networks. In case of insufficient
capabilities of the plain GridFTP protocol, we will employ Globus Transfer (formerly known as Globus

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 29 of 35

Online) that assures data integrity, and can automatically restart interrupted transfers. Globus Transfer
is a cloud-based coordination service that works with standard GridFTP endpoints (like those used in
QCG), thus it can be easily integrated with QCG using the Globus Transfer’s highly reliable fire-and-
forget approach.

2.5.3 Energy Consumption Optimization Service (ECOS)
The role of Energy Consumption Optimization Service is the management of energy parameters of
single or many resources involved in computations of a distributed multiscale application. Based on
dynamic information provided by means of the Energy Consumption Optimization Library, the service
will be responsible for setting up the best possible configuration of all resources in terms of energy
usage. The main scenario assumes that changes of properties of resources are requested by an application
and correspond to its phases, but one can imagine scenarios in which ECOS is integrated with the
energy-aware scheduler or with any pattern manager.

2.5.4 Multisite Transport Overlay (MTO)
Multisite Transport Overlay is a successor of the MUSCLE Transport Overlay service used in the
MAPPER project. It is a daemon for forwarding traffic across administrative domains. This service is
often required when application kernels, in particular those that are MUSCLE-based, must communicate
between several sites with firewall restrictions or Network Address Translation (NAT).

2.6 Experimental Execution Environment
Within the project, we realise an Experimental Execution Environment, which is continuously available
to the project, with a fully functional technology stack as described above. The components of the
ComPat stack described in this deliverable are being deployed and made available for end-users in Work
Package 6 - see Deliverable 6.1 for details. In its current state, the EEE already provides all the
middleware services described in Section 2.5 of this document. The environment will allow for efficient
testing, benchmarking, and even small production runs of ComPat’s applications. It is fully monitored
and quality assurance processes are in place. With time, the EEE will adapt to the needs of its users,
integrating new components.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 30 of 35

3 Conclusions
The architecture of the ComPat system presented in this document addresses the needs identified so far
in the project. We believe that the proposed multi-layered design and division in fast-track and deep-
track components not only allows to develop a fully functional system capable of running highly
demanding applications on extremely large infrastructures, but also facilitates and systematizes the work
in the project. The presented architecture will be implemented, deployed and verified in the next phases
of the project in accordance with the Operational Model accepted and described in deliverable D6.1.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 31 of 35

4 Annexes
Annex A - Middleware Capabilities Questionnaire

1. brokering capabilities: matching applications or their parts to resources to guarantee SLA and
to ensure requested trade-off between the application performance and the cost of resource
energy consumption

2. advance reservation of computing resources
3. advance reservation of network bandwidth (will be implemented if really needed)
4. co-allocation of resources: advance reservation of many (potentially heterogeneous) resources

to synchronize simultaneous processing of many tasks constituting a single application on these
resources

5. [energy] efficient data transfer – staging in and out files and directories in an [energy]efficient
way

6. fault tolerance – resubmission of an application module (auto-restarting) when this functionality
is not supported directly by the LRMS (queueing system) or the provided functionality is not
sufficient.

7. checkpointing and resuming of an application or its part (we can imagine that the middleware
can force an application to checkpoint itself, for example to resume calculations on another
resource. it will require discussion what triggers such action)

8. application driven dynamic adaptation of performance and energy consumption characteristic
of the resources via the ECOL library and ECOS services to adapt the characteristic to
requirements of current phase of the application

9. support for the execution of an application / module on hybrid CPU/GPGPU systems
10. workflow management – currently the DAG model is supported and the execution of a child

task can be triggered by any combination of status changes of a parent tasks. (we need to know
if more advanced constructions like conditions or loops based on tasks’ statuses and
application’s results are needed - so far they are not supported)

11. rescheduling – (automatic) resubmission/migration of a task or its part to another resource to
improve the overall system or application metric (needs clarification, for example what should
trigger such action)

12. various types of available middleware clients: commandline, desktop, portal. The commandline
is prefered for advanced application scenarios especially in the first phase of the project, but the
other choices may be considered for the future.

13. JAVA / Python API (to use the middleware functions by external tools or from the inside of the
application)

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 32 of 35

14. Visual (portal based) monitoring of progress of long running applications (including energy
consumption)

15. in-situ visualization – visualization of the application results in parallel to the computations
(paraview), possibility of steering of an application execution by altering its parameters in the
run time

16. parameter sweep – support for multi-dimensional parameter sweep jobs. Due to performance
reasons a number of sub-tasks is limited and for running hundreds of tasks we strongly
recommend application side solutions, e.g. pilot jobs

17. load balancing – mapping/assigning jobs to resources in a way that balance the overall load on
the system (cluster level mechanism).

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 33 of 35

Annex B – Resource Information Questionaire

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 34 of 35

5 References
1 Derek Groen, Agastya Bhati, James Suter, James Hetherington, Stefan Zasada, Peter V. Coveney,

FabSim: Facilitating computational research through automation on large-scale and distributed e-
infrastructures, Computer Physics Communications (doi:10.1016/j.cpc.2016.05.020)

2 Allinea DDT, the parallel debugger [Online], Availiable: [Accessed 15 June 2016]
3 Allinea DDT Flyer [Online], Available: , [Accessed: 15 June 2015]
4 Allinea MAP, the parallel profiler [Online], Available: , [Accessed: 15 June 2016]
5 Allinea MAP Flyer [Online], Available: , [Accessed: 15 June 2016]
6 Allinea Performance Reports, characterize and understand the performance of HPC application runs

[Online], Available: , [Accessed: 15 June 2016]
7 Allinea Performance Reports Flyer [Online], Available: , [Accessed: 15 June 2016]
8 Borgdorff, J., M. Mamonski, B. Bosak, D. Groen, M.B. Belgacem, K. Kurowski, and A.G. Hoekstra,

Multiscale Computing with the Multiscale Modeling Library and Runtime Environment. Procedia
Computer Science, 2013. 18(0): p. 1097-1105.

9 Borgdorff, J., M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, D. Groen,
P.V. Coveney, and A.G. Hoekstra, Distributed multiscale computing with MUSCLE 2, the
Multiscale Coupling Library and Environment. Journal of Computational Science, 2014. 5: p. 719-
731.

10 Groen, D., S. Rieder, P. Grosso, C.d. Laat, and S.F.P. Zwart, A lightweight communication library
for distributed computing. Comput. Sci. Disc., 2010. 3: p. 015002.

11 Groen, D., S. Rieder, and S. Portegies Zwart, MPWide: a light-weight library for efficient message
passing over wide area networks. Journal of Open Research Software, 2013. 1: p. e9.

12 Groen, D., J. Borgdorff, C. Bona-Casas, J. Hetherington, R.W. Nash, S.J. Zasada, I. Saverchenko,
M. Mamonski, K. Kurowski, M.O. Bernabeu, A.G. Hoekstra, and P.V. Coveney, Flexible
composition and execution of high performance, high fidelity multiscale biomedical simulations.
Interface Focus, 2013. 3(2).

13 Portegies Zwart, S., E.v. Elteren, and I. Pelupessy, Multi-physics simulations using a hierarchical
interchangeable software interface. Computer Physics Communications, 2013. 183: p. 456-468.

14 Portegies Zwart, S.F., S.L.W. McMillan, A. van Elteren, F.I. Pelupessy, and N. de Vries, Multi-
physics simulations using a hierarchical interchangeable software interface. Computer Physics
Communications, 2013. 184(3): p. 456-468.

15 Lorenz, E., Multi-scale simulations with complex automata: in-stent restenosis and suspension flow.
2011,PhD thesis, University of Amsterdam.

ComPat - 671564

 [D5.1 – Architecture of the ComPat System] Page 35 of 35

16 E, W. and B. Engquist, The Heterogeneous Multiscale Methods. COMM. MATH. SCI., 2003. 1(1):

p. 87-132.
17 QCG - Quality in Cloud and Grid. Available from: [Accessed: 15 June 2016]
18 Bosak, B., P. Kopta, K. Kurowski, T. Piontek, and M. Mamoński, New QosCosGrid Middleware

Capabilities and Its Integration with European e-Infrastructure, in eScience on Distributed
Computing Infrastructure. 2014, Springer. p. 34-53.

19 Bosak, B., J. Komasa, P. Kopta, K. Kurowski, M. Mamoński, and T. Piontek, New capabilities in
QosCosGrid middleware for advanced job management, advance reservation and co-allocation of
computing resources – quantum chemistry application use case, in Building a National Distributed
e-Infrastructure–PL-Grid,. 2012, Springer. p. 40-55.

20 Kurowski, K. and e. al., DCworms–A tool for simulation of energy efficiency in distributed
computing infrastructures. Simulation Modelling Practice and Theory, 2013. 39: p. 135-151.

21 Radecki, M., T. Szymocha, T. Piontek, B. Bosak, M. Mamoński, P. Wolniewicz, K. Benedyczak,
and R. Kluszczyński, Reservations for Compute Resources in Federated e-Infrastructure, in eScience
on Distributed Computing Infrastructure. 2014, Springer. p. 80-93.

22 Globus GridFTP [online], Available: http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
[Accessed 15 June 2016]

